OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 545–555

Fast adaptive interferometer on dynamic reflection hologram in CdTe:V

Salvatore Di Girolamo, Alexei A. Kamshilin, Roman V. Romashko, Yuriy N. Kulchin, and Jean Claude Launay  »View Author Affiliations


Optics Express, Vol. 15, Issue 2, pp. 545-555 (2007)
http://dx.doi.org/10.1364/OE.15.000545


View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an adaptive interferometer based on the reflection dynamic hologram recorded in photorefractive CdTe:V crystal with no external electric field. Linear phase-to-intensity transformation is achieved by vectorial mixing of two waves with different polarization states (linear and elliptical) in the anisotropic diffraction geometry. Comparison of reflection and transmission geometries considering both sensitivity and adaptability is carried out. It is shown that the reflection geometry is characterized by better combination of these parameters provided that the crystal possesses high enough concentration of photorefractive centers.

© 2007 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(190.7070) Nonlinear optics : Two-wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 7, 2006
Manuscript Accepted: December 20, 2006
Published: January 22, 2007

Citation
Salvatore Di Girolamo, Alexei A. Kamshilin, Roman V. Romashko, Yuriy N. Kulchin, and Jean-Claude Launay, "Fast adaptive interferometer on dynamic reflection hologram in CdTe:V," Opt. Express 15, 545-555 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Stepanov, "Application of photorefractive crystals," Rep. Prog. Phys. 57, 39-116 (1994). [CrossRef]
  2. I. M. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991). [CrossRef]
  3. R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991). [CrossRef]
  4. P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997). [CrossRef]
  5. A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994). [CrossRef]
  6. B. Campagne, A. Blouin, L. Pujol, and J.-P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sci. Instrum. 72, 2478-2482 (2001). [CrossRef]
  7. A. A. Kamshilin and A. I. Grachev, "Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field," Appl. Phys. Lett. 81, 2923-2925 (2002). [CrossRef]
  8. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems (Springer-Verlag, Berlin, Germany 1991).
  9. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999). [CrossRef]
  10. A. A. Kamshilin, E. Raita, and A. I. Grachev, "Polarization degree of freedom in photorefractive two-wave coupling," in Trends in Optics and Photonics: Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, and G. Montemezzani, eds., 87, 476-482 (2003).
  11. R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, "Linear phase demodulation via reflection photorefractive holograms," in Trends in Optics and Photonics (TOPS): Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. D. Nolte, and J. Xu, eds., Vol. 99 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp. 675-680.
  12. L.-A. de Montmorillon, P. Delaye, J.-C. Launay, and G. Roosen, "Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity," J. Appl. Phys. 82, 5913-5922 (1997). [CrossRef]
  13. J. W. Wagner and J. B. Spicer, "Theoretical noise-limited sensitivity of classical interferometry," J. Opt. Soc. Am. B 4, 1316-1326 (1987). [CrossRef]
  14. K. Paivasaari, H. Tuovinen, A. A. Kamshilin, and E. Raita, "Highly sensitive photorefractive interferometry using external ac-field," in Trends in Optics and Photonics (TOPS): Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. D. Nolte, and J. Xu, eds., Vol. 99 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp.681-686.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited