OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 704–713

Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy

Alfonso Rodríguez Alija, Luis Javier Martínez, Pablo Aitor Postigo, Jose Sánchez-Dehesa, Matteo Galli, Alberto Politi, Maddalena Patrini, Lucio Claudio Andreani, Christian Seassal, and Pierre Viktorovitch  »View Author Affiliations


Optics Express, Vol. 15, Issue 2, pp. 704-713 (2007)
http://dx.doi.org/10.1364/OE.15.000704


View Full Text Article

Enhanced HTML    Acrobat PDF (1517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A complete theoretical and experimental analysis of the photonic band structure for the Suzuki-phase lattice is presented. The band diagrams were calculated by two-dimensional plane wave expansion and three-dimensional guided-mode expansion methods. Angle resolved photoluminescence spectroscopy has been used to measure the emission of the photonic crystal structure realized in active InAsP/InP slabs. Photonic bands with a very low group velocity along an entire direction of the reciprocal lattice have been measured, which may have important applications on future photonic devices. The experimentally determined dispersion is in very good agreement with the calculated photonic bands. The presence of defect modes produced by microcavities in the Suzuki-phase lattice has also been established.

© 2007 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5230) Optoelectronics : Photoluminescence
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Photonic Crystals

History
Original Manuscript: September 29, 2006
Revised Manuscript: December 14, 2006
Manuscript Accepted: December 14, 2006
Published: January 22, 2007

Citation
Alfonso R. Alija, Luis J. Martínez, Pablo A. Postigo, Jose Sánchez-Dehesa, Matteo Galli, Alberto Politi, Maddalena Patrini, Lucio C. Andreani, Christian Seassal, and Pierre Viktorovitch, "Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy," Opt. Express 15, 704-713 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-704


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).
  4. S. Noda and T. Baba, Roadmap on Photonic Crystals, (Kluwer Academic Publishers, Dordrecht, 2003).
  5. K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlag, New York, 2004).
  6. T. Asano, B. -S. Song, and S. Noda, "Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  7. H. Altug, D. Englund, and J. Vuckovic, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006). [CrossRef]
  8. K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006). [CrossRef]
  9. T. Baba, N. Fukaya and Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-656 (1999). [CrossRef]
  10. A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000). [CrossRef]
  11. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A Scherer, and T. P. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939 (2000). [CrossRef]
  12. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystals Slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  13. S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003). [CrossRef] [PubMed]
  14. Yurii A. Vlasov, Martin O’Boyle, Hendrik F. Hamann, and Sharee J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438, 65-69 (2005). [CrossRef]
  15. H. Altug and J. Vuckovic, "Experimental demostration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111102 (2005). [CrossRef]
  16. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP based 2-D photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002). [CrossRef]
  17. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystals microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005). [CrossRef]
  18. D. Caballero, J. S’anchez-Dehesa, R. Martinez-Sala, C. Rubio, J.V. Sanchez-Perez, C. Rubio, L. Sanchis, and F. Meseguer, "Suzuki phase in two-dimensional sonic crystals," Phys. Rev. B 64, 064303 (2001). [CrossRef]
  19. J. Sanchez-Dehesa, F. Ramos-Mendieta, J. Bravo-Abad, J. Martí, A. Martínez, and A. García, "Suzuki phase in two-dimensional photonic crystals," in Photonic Bandgap Materials and Devices, Ali Adibi, Axel Scherer, Shawn-Yu Lin, eds, Proc. SPIE 4655, 251-259 (2002). [CrossRef]
  20. A. L. Reynolds, U. Perschel, F. Lederer, P. J. Roberts, T. F. Krauss, and P. J. I. deMaagt,"Coupled Defects in Photonic Crystals," IEEE Trans. Microwave Theory Tech.,  49, 1860-1867 (2001). [CrossRef]
  21. L. C. Andreani, and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B 73, 235114 (2006). [CrossRef]
  22. A. R. Alija, L. J. Martínez, P. A. Postigo, C. Seassal, and P. Viktorovitch, "Coupled-cavity two-dimensional photonic crystal waveguide ring laser," Appl. Phys. Lett. 89, 101102 (2006). [CrossRef]
  23. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure e_ects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255 (1999) [CrossRef]
  24. A. David, C. Meier, R. Sharma, F.S. Diana, S.P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, and H. Benisty, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005). [CrossRef]
  25. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, "Lasing band-edge identification for a surface-emitting photonic crystal laser," IEEE J. Sel. Areas Commun. 23, 1335 (2005). [CrossRef]
  26. M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, "Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides," Appl. Phys. Lett. 88, 251114 (2006). [CrossRef]
  27. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic crystal microlasers on a silicon wafer," IEEE J. Quantum Electron. 39, 419-425 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited