OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 735–746

The expansion coefficients of arbitrary shaped beam in oblique illumination

Yiping Han, Huayong Zhang, and Guoxia Han  »View Author Affiliations


Optics Express, Vol. 15, Issue 2, pp. 735-746 (2007)
http://dx.doi.org/10.1364/OE.15.000735


View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In Generalized Lorenz-Mie theories, (GLMTs), the most difficult task concerns the description of the illuminating beam. We provide an approach for expansions of the incident arbitrary shaped beam in spherical and spheroidal coordinates in the general case of oblique illumination. The representations for shaped beam coefficients are derived by using addition theorem for spherical vector wave functions under coordinate rotations. For

© 2007 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: September 11, 2006
Revised Manuscript: January 1, 2007
Manuscript Accepted: January 4, 2007
Published: January 22, 2007

Virtual Issues
Vol. 2, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Yiping Han, Huayong Zhang, and Guoxia Han, "The expansion coefficients of arbitrary shaped beam in oblique illumination," Opt. Express 15, 735-746 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gouesbet, B. Maheu, and G. Gréhan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation," J. Opt. Soc. Am. A 5, 1427-1443 (1988). [CrossRef]
  2. G. Gouesbet, G. Gréhan, and B. Maheu, "Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods," Appl. Opt. 27, 4874-4883 (1988). [CrossRef] [PubMed]
  3. G. Gouesbet, G. Gréhan, and B. Maheu, "Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory," J. Opt. Soc. Am. A 7, 998-1003 (1990). [CrossRef]
  4. K. F. Ren, G. Gréhan, and G. Gouesbet, "Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory formulation and numerical results," J. Opt. Soc. Am. A 14, 3014-3025 (1997). [CrossRef]
  5. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, "Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres," Appl. Opt. 36, 5188-5198 (1997). [CrossRef] [PubMed]
  6. A. Doicu and T. Wriedt, "Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions," Appl. Opt. 36, 2971-2978 (1997). [CrossRef] [PubMed]
  7. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam," J. Appl. Phys. 64, 1632-1639 (1988). [CrossRef]
  8. J. P. Barton, "Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination," Appl. Opt. 34, 5542-5551 (1995). [CrossRef] [PubMed]
  9. E. E. M. Khaled, S. C. Hill, and P. W. Barber, "Scattered and internal intensity of a sphere illuminated with a Gaussian beam," IEEE Trans. Antennas Propagat. 41, 259-303 (1993). [CrossRef]
  10. F. M. Schulz, K. Stamnes, and J. J. Stamnes, "Scattering of electromagnetic wave by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates," Appl. Opt. 37, 7875-7896 (1998). [CrossRef]
  11. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, "The imaging properties of scattering particles in laser beams," Meas. Sci. Technol. 10,564-574 (1999). [CrossRef]
  12. T. Evers, H. Dahl, and T. Wriedt, "Extension of the program 3D MMP with a fifth order Gaussian beam," Electron. Lett. 32, 1356-1357 (1996). [CrossRef]
  13. A. Doicu and T. Wriedt, "Formulations of the extended boundary condition method for incident Gaussian beams using multiple-multipole expansions," J. Modern. Opt. 44, 785-801 (1997). [CrossRef]
  14. Y. Han and Z. Wu, "Scattering of a spheroidal particle illuminated by a Gaussian beam," Appl. Opt. 40, 2501-2509 (2001). [CrossRef]
  15. Y. Han and Z. Wu, "The expansion coefficients of a Spheroidal Particle illuminated by Gaussian Beam," IEEE Trans. Antennas Propagat. 49, 615-620 (2001). [CrossRef]
  16. H. Y. Zhang and Y. P. Han, "Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam," IEEE Trans. Antennas Propagat. 53, 1514-1518 (2005). [CrossRef]
  17. Y. Han, H. Zhang, and X. Sun, "Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries," Appl. Phys. B. 84, 485-492 (2006). [CrossRef]
  18. B. Friedman and J. Russek, "Addition theorems for spherical waves," Q. Appl. Math. 12, 13-23 (1954).
  19. S. Stein, "Addition theorems for spherical wave functions," Q. Appl. Math. 19, 15-24 (1961).
  20. O. R. Cruzan, "Translational addition theorems for spherical vector wave functions," Q. Appl. Math. 20, 33-40 (1962).
  21. S. Asano and G. Yamamoto, "Light scattering by a spheroid particle," Appl. Opt. 14, 29-49 (1975). [PubMed]
  22. J. Dalmas and R. Deleuil, "Translational addition theorems for prolate spheroidal vector wave functions Mr and Nr ," Q. Appl. Math. 38,143-158 (1980).
  23. A. R. Edmonds, Angular momentum in quantum mechanics, (Princeton University Press, Princeton, N. J, 1957), Chap.4.
  24. B. P. Sinha and R. H. Macphie, "Translational addition theorems for spheroidal scalar and vector wave functions," Q. Appl. Math. 44,213-222 (1986).
  25. L. W. Davis, "Theory of electromagnetic beam," Phys. Rev. A 19, 1177-1179 (1979). [CrossRef]
  26. C. Flammer, Spheroidal wave functions, (Stanford University Press, Stanford, California, 1957).
  27. J. A. Stratton, Electromagnetic Theory, (New York: McGraw-Hill, 1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited