OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 12686–12691

Multilayer 3-D photonics in silicon

Prakash Koonath and Bahram Jalali  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 12686-12691 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensionally (3-D) integrated photonic structures in multiple layers of silicon are reported. Implantation of oxygen ions into a silicon-on-insulator substrate with a patterned thermal oxide mask, followed by a high temperature anneal, creates photonic structures on 3-D integrated layers of silicon. This process is combined with epitaxial growth to achieve devices on three vertically integrated layers of silicon. As a demonstration vehicle, we report a multistage optical filter that comprises of coupled microdisks on two subsurface silicon layers with bus waveguides on the surface (3rd) layer. The optical filter shows extinction ratios in excess of 14 dB, with excess insertion loss of less than 1 dB.

© 2007 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: July 9, 2007
Revised Manuscript: August 15, 2007
Manuscript Accepted: August 15, 2007
Published: September 19, 2007

Prakash Koonath and Bahram Jalali, "Multilayer 3-D photonics in silicon," Opt. Express 15, 12686-12691 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Boyraz and B. Jalali, "Demonstration of a Silicon Raman Laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  2. H. Rong,  et al, "Low-threshold continuous-wave Raman silicon laser," Nat. Photonics 1, 232 - 237 (2007). [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005). [CrossRef] [PubMed]
  4. X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulse amplification in silicon wire waveguides," IEEE J. of Quantum Electron. 42, 160-170 (2006). [CrossRef]
  5. F. Xia, L. Sekaric and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006). [CrossRef]
  6. K. Jia,  et al, "Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating," IEEE Photon. Technol. Lett. 17, 378-380 (2005). [CrossRef]
  7. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004). [CrossRef]
  8. M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004). [CrossRef]
  9. Y. Kuo,  et al, "Strong quantum-confined stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005). [CrossRef] [PubMed]
  10. P. Dumon,  et al. "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004). [CrossRef]
  11. M. Hochberg,  et al., "Terahertz All-Optical Modulation in Silicon-Polymer Hybrid System," Nat. Mater. 5, 703 - 709 (2006). [CrossRef] [PubMed]
  12. T. K. Liang and H. K. Hsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Letts. 84, 2745-2747 (2004). [CrossRef]
  13. S. Tyagi,  et al. "A 65nm ultra low power logic platform technology using Uni-axial strained silicon transistors," IEEE IEDM Tech. Digest 245-247 (2005). [CrossRef]
  14. T. Tsuchizawa,  et al., "Microphotonics devices based on silicon microfabrication technology," EEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005). [CrossRef]
  15. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 21, 1622-1631 (2004). [CrossRef]
  16. A. Fazio, "A high density high performance 180nm generation Etox™ flash memory technology," IEEE IEDM Tech. Digest 267-270 (1999).
  17. W. R. Davis,  et al., "Demystifying 3D ICs: The pros and cons of going vertical," IEEE Design and Test of Computers 22, 498-510 (2005). [CrossRef]
  18. P. Koonath, K. Kishima, T. Indukuri and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Letts. 83, 4909-4911 (2003). [CrossRef]
  19. M. Chen,  et al, "Dose-energy match for the formation of high-integrity buried oxide layers in low-dose separation-by-implantation-of-oxygen materials," Appl. Phys. Letts. 80, 880-82 (2002). [CrossRef]
  20. H. Ono and A. Ogura, "Evaulation of buried oxide formation in low dose SIMOX," Appl. Surf. Sci. 159-160, 104-110(2000).
  21. R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990). [CrossRef]
  22. L. C. Kimerling,  et al, "Electronic-Photonic integrated circuits on the CMOS platform," Proc. SPIE 6125, 612502-1-10 (2006). [CrossRef]
  23. T. Indukuri, P. Koonath, and B. Jalali, "Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon," Appl. Phys. Lett. 88, 121108 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited