OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 12818–12833

Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range

Guang S. He, Ken-Tye Yong, Qingdong Zheng, Yudhisthira Sahoo, Alexander Baev, Aleksandr I. Ryasnyanskiy, and Paras N. Prasad  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 12818-12833 (2007)
http://dx.doi.org/10.1364/OE.15.012818


View Full Text Article

Enhanced HTML    Acrobat PDF (607 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi-photon absorption and excitation properties of CdSe quantum dots in hexane with different dot-sizes have been investigated. The two- and three-photon absorption (2PA and 3PA) coefficients were measured by using ~160-fs laser pulses at wavelengths of ~775-nm and ~1300-nm, respectively. The dependence of one-, two- and three-photon induced fluorescence spectra as well as their double-exponential decay on the dot-sizes was studied. Based on the fluorescence emission spectra and temporal decay constants for a given sample solution excited by one-, two-and three-photon absorption, it can be concluded that the transition pathways for fluorescence emission and decay under one-, two- and three-photon excitation are nearly identical. The optical power limiting capabilities based on 2PA and 3PA mechanisms are demonstrated separately. In addition, a saturation behavior of 3PA at ~1300 nm was observed.

© 2007 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 12, 2007
Revised Manuscript: August 30, 2007
Manuscript Accepted: August 30, 2007
Published: September 21, 2007

Citation
Guang S. He, Ken-Tye Yong, Qingdong Zheng, Yudhisthira Sahoo, Alexander Baev, Aleksandr I. Ryasnyanskiy, and Paras N. Prasad, "Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range," Opt. Express 15, 12818-12833 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kaschke, N. P. Ernsting, U. Mueller, and H. Weller, "Ultrafast electron ejection and trapping in semiconductor colloids after multiple photon absorption," Chem. Phys. Lett. 168, 543-550 (1990). [CrossRef]
  2. K. I. Kang, B. P. McGinnis, Sandalphon, Y. Z. Hu, S. W. Koch, N. Peyghambarian, A. Mysyrowicz, L. C. Liu, and S. H. Risbud, "Confinement-induced valence-band mixing in cadmium sulfide quantum dots observed by two-photon spectroscopy," Phys. Rev. B 45, 3465-8 (1992). [CrossRef]
  3. K. Brunner, G. Abstreiter, G. Baehm, G. Traenkle, and G. Weimann, "Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure," Phys. Rev. Lett. 73, 1138-41 (1994). [CrossRef] [PubMed]
  4. Y. Z. Hu, S. W. Koch, and N. Peyghambarian, "Strongly confined semiconductor quantum dots: pair excitations and optical properties," J. Lumin. 70, 185-202 (1996). [CrossRef]
  5. G. P. Banfi, V. Degiorgio, and D. Fortusini, "Two-photon absorption coefficient measurements based on widely tunable femtosecond pulses from parametric generation," Pure Appl. Opt. 7, 361-372 (1998). [CrossRef]
  6. M. Schall and P. Uhd. Jepsen, "Above-band gap two-photon absorption and its influence on ultrafast carrier dynamics in ZnTe and CdTe," Appl. Phys. Lett. 80, 4771-4773 (2000). [CrossRef]
  7. R. G. Ispasoiu, Y. Jin, J. Lee, F. Papadimitrakopoulos, and T. GoodsonIII, "Two-photon absorption and photon-number squeezing with CdSe nanocrystals," Nano Lett. 2, 127-130 (2002). [CrossRef]
  8. G. Chen, T. H. Stievater, E. T. Batteh, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, "Biexciton quantum coherence in a single quantum dot," Phys. Rev. Lett. 88, 117901/1-117901/4 (2002). [CrossRef]
  9. D. H. Son, J. S. Wittenberg, and A. P. Alivisatos, "Multielectron ionization of CdSe quantum dots in intense femtosecond ultraviolet light," Phys. Rev. Lett. 92, 127406/1-127406/4 (2004). [CrossRef]
  10. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, "Two-photon absorption in CdTe quantum dots," Opt. Express 13, 6460-6467 (2005). [CrossRef] [PubMed]
  11. G. S. He, Q. Zheng, K.-T. Yong, A. Ryasnyanskiy, P. N. Prasad, and A. Urbas, "Two-photon absorption based optical limiting and stabilization by using a CdTe quantum dot solution excited at optical communication wavelength of ~1300 nm," Appl. Phys. Lett. 90, 181108 (2007). [CrossRef]
  12. Y. Kagotani, K. Miyajima, G. Oohata, S. Saito, M. Ashida, K. Edamatsu, and T. Itoh, "Two-photon absorption and lasing due to biexciton in CuCl quantum dots," J. Lumin. 112, 113-116 (2005). [CrossRef]
  13. H. Ju, A. V. Uskov, R. Noetzel, Z. Li, V. J. Molina, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, "Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers," Appl. Phys. B 82, 615-620 (2006). [CrossRef]
  14. N. Venkatram, D. N. Rao and M. A. Akundi, "Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles," Opt. Express 13, 867-872 (2005). [CrossRef] [PubMed]
  15. Y. Gao, N. Q. Huong, J. L. Birman, and M. J. Potasek, "Large nonlinear optical properties of semiconductor quantum dot arrays embedded in an organic medium," J. Appl. Phys. 96, 4839-4842 (2005). [CrossRef]
  16. J. W. M. Chon and M. Gu, "Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation," Appl. Opt. 43, 1063-1071 (2004). [CrossRef] [PubMed]
  17. N. Thantu, "Second harmonic generation and two-photon luminescence upconversion in glasses doped with ZnSe nanocrystalline quantum dots," J. Lumin. 111, 17-24 (2005). [CrossRef]
  18. Y. Fu, Y. Luo, and H. Aagren, "Multiple-photon spectrum of CdS semiconductor quantum dot for bioimaging," Thin Solid Films 515, 842-845 (2006). [CrossRef]
  19. M. Seydack, "Nanoparticle labels in immunosensing using optical detection methods," Biosens. Bioelectron. 20, 2454-2469 (2005). [CrossRef] [PubMed]
  20. M. Etienne, A. Biney, A. D. Walser, R. Dorsinville, D. L. V. Bauer, and V. Balogh-Nair, "Third-order nonlinear optical properties of a cadmium sulfide-dendrimer nanocomposites," Appl. Phys. Lett. 87, 181913/1-181913/3 (2005). [CrossRef]
  21. G. S. He, T. C. Lin, P. N. Prasad, C.-C. Chjo, and L.-J. Yu, "Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase," Appl. Phys. Lett. 82, 4717-4719 (2003). [CrossRef]
  22. G. S. He, Q. Zheng, C. Lu, and P. N. Prasad, "Two- and three-photon absorption based optical limiting and stabilization using a liquid dye," IEEE J. Quantum Electron. 41, 1037-1043 (2005). [CrossRef]
  23. M. A. Malik, P. O’Brien, S. Norager, and J. Smith, "Gallium arsenide nanoparticles: synthesis and characterisation," J. Mater. Chem. 13, 2591-2595 (2003). [CrossRef]
  24. W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon, "Large enhancement of spontaneous emission rates of InAs quantum dots in GaAs microdisks," Opt. Lett. 27, 948-950 (2002). [CrossRef]
  25. C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300nm," Appl. Phys. Lett. 88, 131102 (2006). [CrossRef]
  26. L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerence, semiconductors, and other materials," Prog. Quantum Electron. 17, 299-338 (1993). [CrossRef]
  27. A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, J. Am. Chem. Soc. 119, 2682-2692 (1997). [CrossRef]
  28. S.-C. Pu, M.-J. Yang, C. -C. Hsu, C.-W. Lai, C.-C. Hsieh, S. H. Lin, Y.-M. Cheng, and P.-T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006) [CrossRef] [PubMed]
  29. L. Banyai, Y. Z. Hu, M. Lindberg, and S.W. Koch, "Third-order optical nonlinearities in semiconductor nanostructures," Phys. Rev. B 38, 8142-8153 (1988) [CrossRef]
  30. M. A. El-Sayed, "Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals," Acc. Chem. Res. 37, 326-333 (2004). [CrossRef] [PubMed]
  31. S. Link and M. A. El-Sayed, "Spectra properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999). [CrossRef]
  32. K. Takemoto, B.-R. Hyun, M. Furuya, M. Ikezawa, J. Zhao, and Y. Masumoto, "Universal dephasing mechanism in semiconductor quantum dots embedded in a matrix," J. Phys. Soc. Japan 72, 249-252 (2003). [CrossRef]
  33. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, "Optical nonlinearities of a high concentration of small metal particles dispersed in glass: Copper and silver particles," J. Opt. Soc. Am. B 11, 1236-1243 (1994). [CrossRef]
  34. V. P. Drachev, A.K. Buin, H. Nakotte, and V. M. Shalaev, "Size dependent χ(3) for conduction electrons in Ag nanoparticles," Nano Lett. 4, 1535-1539 (2004). [CrossRef]
  35. W. J. Jin, J. M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, "Surface-modified CdSe quantum dots as luminescent probes for cyanide determination," Anal. Chim. Acta 522, 1-8 (2004). [CrossRef]
  36. G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, "Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound," Opt. Lett. 20, 1524-1526 (1995). [CrossRef] [PubMed]
  37. G. S. He, Q. Zheng, A. Baev, and P. N. Prasad, "Saturation of multi-photon absorption upon strong and ultrafast infrared laser excitation," J. Appl. Phys. 101, 083108 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited