OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 12905–12915

Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse

Dennis K. Killinger, Susan D. Allen, Robert D. Waterbury, Chris Stefano, and Edwin L. Dottery  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 12905-12915 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time to the best of our knowledge, a simultaneous 10.6 μm CO2 laser pulse has been used to enhance the Laser Induced Breakdown Spectroscopy (LIBS) emission from a 1.064 μm Nd:YAG laser induced plasma on a hard target. The enhancement factor was on the order of 25 to 300 times, depending upon the emission lines observed. For an alumina ceramic substrate the Al emission lines at 308 nm and Fe impurity line at 278 nm showed an increase of 60× and 119×, respectively. The output energy of the Nd:YAG laser was 50 mJ/pulse focused to a 1 mm diameter spot to produce breakdown. The CO2 laser pulse had a similar energy density of 40 mJ/mm2. Timing overlap of the two laser pulses within 1 microsecond was important for enhancement to be observed. An observed feature was the differential enhancement between different elemental species and also between different ionization states, which may be helpful in the application of LIBS for multi-element analysis.

© 2007 Optical Society of America

OCIS Codes
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: July 17, 2007
Revised Manuscript: September 9, 2007
Manuscript Accepted: September 12, 2007
Published: September 24, 2007

Dennis K. Killinger, Susan D. Allen, Robert D. Waterbury, Chris Stefano, and Edwin L. Dottery, "Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse," Opt. Express 15, 12905-12915 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Song, Y. I. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997). [CrossRef]
  2. L. J. Radziemski and D. A. Cremers, "Spectrochemical analysis using laser plasma excitation," L. J. Radziemski and D. A. Cremers, eds., in Laser-Induced Plasma: Physical, Chemical and Biological Applications, (Marcel Dekker, New York, 1989).
  3. A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy, (Cambridge University Press 2006). [CrossRef]
  4. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006). [CrossRef]
  5. D. N. Stratis, K. L. Eland, and S. M. Angel, "Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS," Appl. Spectrosc. 54, 1719 (2000). [CrossRef]
  6. J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, "Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy," Appl. Spectrosc. 60, 65 (2006). [CrossRef] [PubMed]
  7. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, Jr., J. C. Carter, and S. M. Angel, "Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses," Appl. Opt. 42, 6099 (2003). [CrossRef] [PubMed]
  8. J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005). [CrossRef]
  9. V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006). [CrossRef]
  10. P. Mukherjee, S. Chen, and S. Witanachchi, "Effect of initial plasma geometry and temperature on dynamic expansion in dual-laser ablation," Appl. Phys. Lett. 74, 1546 (1999). [CrossRef]
  11. K. Song, Y. Lee, and J. Sneddon, "Recent developments in instrumentation for laser induced breakdown spectroscopy," Appl. Spectrosc. Rev. 37, 89 (2002). [CrossRef]
  12. S. Y. Chan and N. H. Cheung, "Analysis of solids by laser ablation and resonance-enhanced laser-induced spectroscopy," Anal. Chem. 72, 2087 (2000). [CrossRef] [PubMed]
  13. CRC Handbook of Chemistry and Physics, Table of Atomic Spectra (2004).
  14. V. N. Rai, F. Y. Yueh, and J. P. Singh, "Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses," Pramana-J. of Phys. 65, 1075 (2005). [CrossRef]
  15. A. G. Leonov, D. I. Chekhov, and A. N. Staristin, "Mechanisms of resonant laser ionization," J. Exp. Theor. Phy. 84, 703 (1997). [CrossRef]
  16. J. S. Townsend, Electricity in Gases, (Oxford University Press, New York, 1914); reprinted Wexford College Press (2007).
  17. J. Rahel, M. Sira, P. Stahel, and D. Trunec, "The transition between different discharge regimes in atmospheric pressure air barrier discharge," Contrib. Plasma Phys. 47, 34 (2007). [CrossRef]
  18. N. Jidenko, C. Jimenez, F. Massines, and J.P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," J. Phys. D 40, 4155 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited