OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 12971–12978

Thermally induced wavelength tunability of microcavity solid-state dye lasers

Sébastien Ricciardi, Sergei Popov, Ari T. Friberg, and Sergey Sergeyev  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 12971-12978 (2007)
http://dx.doi.org/10.1364/OE.15.012971


View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavelength tunability of a microcavity solid-state dye laser is modeled and demonstrated by simulations making use of the finite element method. We investigate the application of two phenomena, thermoelastic expansion of the microcavity material and thermo-induced change of the refractive index, to tune the microcavity mode frequencies by a variation of the effective optical path. An optimized size of the laser microcavity is defined depending on the operation wavelength bandwidth and the glass transition temperature of the gain material.

© 2007 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(160.6840) Materials : Thermo-optical materials
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 18, 2007
Revised Manuscript: September 18, 2007
Manuscript Accepted: September 19, 2007
Published: September 25, 2007

Citation
Sébastien Ricciardi, Sergei Popov, Ari T. Friberg, and Sergey Sergeyev, "Thermally induced wavelength tunability of microcavity solid-state dye lasers," Opt. Express 15, 12971-12978 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007). [CrossRef]
  3. P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003). [CrossRef]
  4. B. N. G. Giepmans, S. Adams, M. Ellisman, and R. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006). [CrossRef] [PubMed]
  5. F. J. Duarte, ed., Tunable Lasers Handbook (Elsevier, Amsterdam, 1995).
  6. M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007). [CrossRef] [PubMed]
  7. J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002). [CrossRef]
  8. A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004). [CrossRef]
  9. F. Duarte and R. O. James, "Tunable solid-state lasers incorporating dye-doped, polymer-nanoparticle gain media," Opt. Lett. 28, 2088-2090 (2003). [CrossRef] [PubMed]
  10. A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002). [CrossRef]
  11. M. B. Christiansen, M. Schøler, and A. Kristensen, "Integration of active and passive polymer optics," Opt. Express 15, 3931-3939 (2007). [CrossRef] [PubMed]
  12. http://www.comsol.com.
  13. B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 23102 (2006). [CrossRef]
  14. M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, "Finite-element simulation of cavity modes in a microfluidic dye ring laser," J. Opt. A, Pure Appl. Opt. 8, 17-20 (2006). [CrossRef]
  15. F. P. Schafer, ed., Dye Lasers (Springer, Berlin, 1977).
  16. F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, "Measurements of ∂n/∂T in solid-state dye-laser gain media," Appl. Opt. 39, 6522-6523 (2000).
  17. http://www.microchem.com/products/su_eight.htm.
  18. S. Popov, S. Ricciardi, A. T. Friberg, and S. Sergeyev, "Mode suppression in a microcavity solid-state dye laser," J. Eur. Opt. Soc. Rapid Publ. 2, 07023 (2007). [CrossRef]
  19. E. Hecht, Optics, 4th edition (Addison Wesley, San Francisco, 2002).
  20. http://memscyclopedia.org/>.
  21. http://polymer.nims.go.jp/polyinfo_top_eng.htm>.
  22. R. H. Wiley and G. M. Brauer, "Refractometric determination of second-order transition temperatures in polymers. II. Some acrylic, vinyl halide, and styrene polymers," J. Polymer Sci. 3, 455-461 (1948). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited