OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 12979–12988

Inverse silica opal photonic crystals for optical sensing applications

Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 12979-12988 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work reports fabrication of inverse silica opal photonic crystal structures from direct polystyrene micro sphere opals using low-temperature sol-gel infiltration of silica, and examines performance of these photonic crystals as environmental refractive index sensors. Sensitivity of the spectral position and optical attenuation of photonic stop gaps is found to allow detection of the index changes by the amount of ~10-3. The high value of sensitivity, which is comparable with those of other optical sensing techniques, along with simplicity of the optical detection setup required for sensing, and the low-temperature, energy-efficient fabrication process make inverse silica opals attractive systems for optical sensing applications.

© 2007 Optical Society of America

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 9, 2007
Revised Manuscript: September 18, 2007
Manuscript Accepted: September 18, 2007
Published: September 25, 2007

Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T, Tanimura, and K. Maeda, "Inverse silica opal photonic crystals for optical sensing applications," Opt. Express 15, 12979-12988 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000) [CrossRef] [PubMed]
  4. H. Fudouzi and Y. Xia, "Photonic papers and inks: color writing with colorless materials," Adv. Mater. 15, 892-896 (2003). [CrossRef]
  5. J. H. Holtz and S. A. Asher, "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials," Nature 389, 829 (2003).
  6. H. Altug and J. Vuèkoviè, "Polarization control and optical sensing with two-dimensional coupled photonic crystal microcavity arrays," Opt. Lett. 30, 982-984 (2005). [CrossRef] [PubMed]
  7. E. Chow, L. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  8. T. Prasad, D. M. Mittleman, and V. L. Colvin, "A photonic crystal sensor based on the superprism effect," Opt. Mater. 29, 5659 (2006). [CrossRef]
  9. M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D.  Pagnoux, W. Blanc and B. Dussardier "Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement." Meas. Sci. Technol. 17, 992-997 (2006). [CrossRef]
  10. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  11. A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, "Mesoporous photonic crystals for sensor applications," in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications II. H. H. Du, R. Bise, eds., (2006), pp. 63690B.
  12. S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, "Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate," Appl. Phys. Lett. 82, 4283-4285 (2003). [CrossRef]
  13. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, "Tailoring and Characterization of Photonic Crystals," J. Photochem. Photobiol. C 2, 35-69 (2001). [CrossRef]
  14. S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, "Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method," Thin Solid Films 322, 238-244 (1998). [CrossRef]
  15. S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, "Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide," Opt. Commun. 148, 242-248 (1998). [CrossRef]
  16. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, "Optical properties of inverse opal photonic crystals," Chem. Mater. 14, 3305-3315 (2002). [CrossRef]
  17. D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, "Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies," J. Am. Ceram. Soc. 66, 693 - 699 (1983). [CrossRef]
  18. S. Sakka and J. D. Mackenzie, "Relation between apparent glass transition temperature and liquids temperature for inorganic glasses," J. Non-Cryst. Solids 6, 145 - 162 (1971). [CrossRef]
  19. Y. Nishijima,  et al., to be published (2007).
  20. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).
  21. J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, "Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers," Langmuir 22, 7378-7383 (2006). URL http://dx.doi.org/10.1021/la0607611. [CrossRef] [PubMed]
  22. K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki "Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal," Synthetic Metals 121, 1459-1462 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited