OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13003–13022

Investigation of the suitability of silicate bonding for facet termination in active fiber devices

Supriyo Sinha, Karel E. Urbanek, Alan Krzywicki, and Robert L. Byer  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 13003-13022 (2007)
http://dx.doi.org/10.1364/OE.15.013003


View Full Text Article

Acrobat PDF (1423 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that silicate bonding an optical flat to the output facet of an active fiber device can increase the reliability of high-peak power systems and subsantially reduce the effective feedback at the termination of a double-clad fiber. We determine the bonding parameters and conditions that maximize the optical damage threshold of the bond and minimize the Fresnel reflection from the bond. At 1-μm wavelength, damage thresholds greater than 70 J/cm2 are demonstrated for 25-ns pulses. We also measured Fresnel reflections less than -63 dB off the bond. Finally, we determined that the strength of the bond is sufficient for most operating environments.

© 2007 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3330) Lasers and laser optics : Laser damage
(240.0240) Optics at surfaces : Optics at surfaces
(350.1820) Other areas of optics : Damage

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 10, 2007
Revised Manuscript: September 14, 2007
Manuscript Accepted: September 24, 2007
Published: September 25, 2007

Citation
Supriyo Sinha, Karel E. Urbanek, Alan Krzywicki, and Robert L. Byer, "Investigation of the suitability of silicate bonding for facet termination in active fiber devices," Opt. Express 15, 13003-13022 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13003


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction-limited brightness," Conference on Lasers and Electro-Optics Europe, CLEO/Europe (2005).
  2. C. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111,119 (2006).
  3. N. Bloembergen, "Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surface of transparent dielectrics," Appl. Opt. 12, 661 (1973).
  4. M. Wickham, J. Anderegg, S. Brosnan, et al., "Coherently coupled high power fiber arrays," Advanced Solid State Photonics, Santa Fe, USA, February pp. 1-4 (2004).
  5. J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
  6. S. Sinha, C. Langrock, M. Digonnet, M. Fejer, and R. Byer, "Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator," Opt. Lett. 31, 347-349 (2006). [CrossRef]
  7. S. Sinha, K. Urbanek, D. Hum, M. Digonnet, M. Fejer, and R. Byer, "Linearly polarized, 3.35 W narrowlinewidth, 1150 nm fiber master oscillator power amplifier for frequency doubling to the yellow," Opt. Lett. 32, 1530-1532 (2007). [CrossRef]
  8. D. Gwo, "Ultra precision and reliable bonding method," (2001). US Patent 6,284,085.
  9. E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005). [CrossRef]
  10. P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003). [CrossRef]
  11. K. Mackenzie, I. Brown, P. Ranchod, and R. Meinhold, "Silicate bonding of inorganic materials Part 1. Chemical reactions in sodium silicate at room temperature," J. Mater. Sci. 26, 763-768 (1991).
  12. J. Limpert, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "High-average-power millijoule fiber amplifier system," Lasers and Electro-Optics, 2002. CLEO’02. Technical Digest. pp. 591-592 (2002).
  13. D. Marcuse, "Gaussian approximation of the fundamental modes of graded-index fibers," J. Opt. Soc. Am. 68, 103-109 (1978).
  14. A. E. Siegman, "Lasers," Lasers, (University Science Books, 1986), Vol. 1283 pp, 1986.
  15. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
  16. B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). [CrossRef]
  17. S. Nemoto and T. Makimoto, "Analysis of splice loss in single-mode fibres using a Gaussian field approximation," Opt. Quantum Electron. 11, 447-457 (1979). [CrossRef]
  18. S. Hansen, K. Dybdal, and C. Larsen, "Gain limit in erbium-doped fiber amplifiers due to internal Rayleigh backscattering," IEEE Photon. Technol. Lett. 4, 559-561 (1992). [CrossRef]
  19. J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003). [CrossRef]
  20. H. Armandula and P. Willems, "Fused silica fibers - silicate bonding research at Caltech," Proceedings of ALUK meeting ALUKGLA0017aAUG03, 1-17 (2003).
  21. B. Abott and R. Abott and R. Adhikari and A. Ageev and and B. Allen and R. Amin and S. Anderson and others, "Detector description and performance for the first coincidence observations between LIGO and GEO," Nucl, Inst. Meth. Phys. Research, A 517, 154-179 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited