OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13155–13166

A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2GHz

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 13155-13166 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a fundamentally mode-locked fiber laser with a repetition frequency in excess of 2 GHz at a central wavelength of 1.535 μm. Co-doped ytterbium-erbium fiber provides the gain medium for the laser, affording high gain per unit length, while a semiconductor saturable absorber mirror (SAM) provides the pulse shaping mechanism in a standing wave cavity. Results are shown confirming cw mode-locking for 1GHz and 2GHz repetition frequency systems. The response of the frequency comb output to pump power variations is shown to follow a single pole response. The timing jitter of a 540 MHz repetition-rate laser has been suppressed to below 100 fs through phase-lead compensated feedback to the pump power. Alternatively, a single comb line of a 850 MHz repetition-rate laser has been phase-locked to a narrow linewidth cw laser with an in-loop phase jitter of 0.06 rad2. The laser design is compatible with low-noise oscillator applications.

© 2007 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.0250) Optical devices : Optoelectronics

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 8, 2007
Revised Manuscript: September 17, 2007
Manuscript Accepted: September 23, 2007
Published: September 26, 2007

J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, "A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz," Opt. Express 15, 13155-13166 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Coddington,W. C. Swann, L. Lorini, J. C. Bergquist, Y. L. Coq, Q. Q. C.W. Oates, K. S. Feder, J.W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, "Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter," Nature Photonics 1, 283 (2007). [CrossRef]
  2. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, "Fiber-laser frequency combs with sub-hertz relative linewidths," Opt. Lett. 31, 3046 (2006). [CrossRef] [PubMed]
  3. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, "Frequency metrology with a turnkey all-fiber system," Opt. Lett. 29, 2467 (2004). [CrossRef] [PubMed]
  4. P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. H¨ansch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, "Long term comparison of two fiber based frequency comb systems," Opt. Express 13, 904 (2005). [CrossRef] [PubMed]
  5. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, "Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies," Opt. Express 12, 5872 (2004). [CrossRef] [PubMed]
  6. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029 (2005). [CrossRef] [PubMed]
  7. F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542 (2004). [CrossRef] [PubMed]
  8. S. Schiller, "Spectrometry with frequency combs," Opt. Lett. 27, 766 (2002). [CrossRef]
  9. W. C. Swann and N. R. Newbury, "Frequency-resolved coherent lidar using a femtosecond fiber laser," Opt. Lett. 31, 826 (2006). [CrossRef] [PubMed]
  10. J. McKinney, D. Leaird, and A. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-totime pulse shaper," Opt. Lett. 27, 1345 (2002). [CrossRef]
  11. Z. Jiang, D. Leaird, and A. Weiner, "Optical arbitrary waveform generation and characterization using spectral line-by-line control," J. Lightwave Technol. 24, 2487 (2006). [CrossRef]
  12. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, "Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions," Appl. Phys. B 86, 219 (2007). [CrossRef]
  13. S. Zeller, T. Sudmeyer, K. Weingarten, and U. Keller, "Passively modelocked 77 GHz Er:Yb:glass laser," Electron. Lett. 43, 32 (2007). [CrossRef]
  14. A. Schlatter, B. Rudin, S. C. Zeller, R. Paschotta, G. J. Spuhler, L. Krainer, N. Haverkamp, H. R. Telle, and U. Keller, "Nearly quantum-noise-limited timing jitter from miniature Er:Yb:glass lasers," Opt. Lett. 30, 1536 (2005). [CrossRef] [PubMed]
  15. J. Schlager, B. Callicoatt, R. Mirin, N. Sanford, D. Jones, and J. Ye, "Passively mode-locked glass waveguide with 14-fs timing jitter," Opt. Lett. 28, 2411 (2003). [CrossRef] [PubMed]
  16. F. K¨artner, J. der Au, and U. Keller, "Mode-locking with slow and fast saturable absorbers-what’s the difference?" IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998). [CrossRef]
  17. C . Hönninger, R. Paschotta, F . Morier-Genoud, M.  Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B, Opt. Phys. 16, 46 (1999). [CrossRef]
  18. T. Schibli, E. Thoen, F. K¨artner, and E. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, S41 (2000). [CrossRef]
  19. "MenloSystems, GmbH," URL www.menlosystems.com/fc1500.html.
  20. B. Collings, K. Bergman, S. Cundiff, S. Tsuda, J. Kutz, J. Cunningham, W. Jan, M. Koch, and W. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065 (1997). [CrossRef]
  21. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, "5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes," IEEE Photonics Technol. Lett. 17, 750 (2005). [CrossRef]
  22. T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, "Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes," Opt. Express 13, 8025 (2005). [CrossRef] [PubMed]
  23. "BATOP, GmbH." URL www.batop.de/products/saturable absorber/SAM/SAMs 1550.html.
  24. J. Townsend, W. Barnes, K. Jedrzejewski, and S. Grubb, "Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain," Electron. Lett. 27, 1958 (1991). [CrossRef]
  25. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er3+ - and Yb3+-Er3+-doped phosphate glasses," J. Opt. Soc. Am. B, Opt. Phys. 17, 833 (2000). [CrossRef]
  26. Y. Hu, S. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, "Performance of high-concentration Er3+-Yb3+-codoped phosphate fiber amplifiers," IEEE Photon. Technol. Lett. 13, 657 (2001). [CrossRef]
  27. C. Jiang, W. Hu, and Q. Zeng, "Improved gain performance of high concentration Er3+/-Yb3+-codoped phosphate fiber amplifier," IEEE J. Quantum Electron. 41, 704 (2005). [CrossRef]
  28. S. Grubb,W. Humer, R. Cannon, S. Vendetta, K. Sweeney, P. Leilabady, M. Keur, J. Kwasegroch, T. Munks, and D. Anthon, "24.6 dBm output power Er/Yb codoped optical amplifier pumped by diode-pumped Nd:YLE laser," Electron. Lett. 28, 1275 (1992). [CrossRef]
  29. G. Vienne, J. Caplen, L. Dong, J. Minelly, J. Nilsson, and D. Payne, "Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers," J. Lightwave Technol. 16, 1990 (1998). [CrossRef]
  30. M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, "Resonant saturable absorber mirrors for dispersion control in ultrafast lasers," IEEE J. Quantum Electron. 43, 174 (2007). [CrossRef]
  31. D. Hanna, R. Percival, I. Perry, R. Smart, and A. Tropper, "Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8μm region," Electron. Lett. 24, 1068 (1988). [CrossRef]
  32. J. Sahu, Y. Jeong, D. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159 (2003). [CrossRef]
  33. G. Spühler, L. Krainer, E. Innerhofer, R. P. K. Weingarten, and U. Keller, "Soliton mode-locked Er:Yb:glass laser," Opt. Lett. 30, 263 (2005). [CrossRef] [PubMed]
  34. B. R. Washburn, W. C. Swann, and N. R. Newbury, "Response dynamics of the frequency comb output from a femtosecond fiber laser," Opt. Express 13, 10622 (2005). [CrossRef] [PubMed]
  35. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, "Frequency stabilization of mode-locked erbium fiber lasers using pump power control," Appl. Phys. B 78, 321 (2004). [CrossRef]
  36. H. Telle, "Stabilization and modulation schemes of laser diodes for applied spectroscopy." Spectrochimica Acta Review 15, 301 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited