OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13203–13211

Optical pulse compression in dispersion decreasing photonic crystal fiber

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 13203-13211 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Improvements to tapered photonic crystal fiber (PCF) fabrication have allowed us to make up to 50 m long PCF tapers with loss as low as 30 dB/km. We discuss the design constraints for tapered PCFs used for adiabatic soliton compression and demonstrate over 15 times compression of pulses from over 830 fs to 55 fs duration at a wavelength of 1.06 μm, an order of magnitude improvement over previous results.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: August 22, 2007
Revised Manuscript: September 14, 2007
Manuscript Accepted: September 20, 2007
Published: September 26, 2007

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, "Optical pulse compression in dispersion decreasing photonic crystal fiber," Opt. Express 15, 13203-13211 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. V. Chernikov and P. V. Mamyshev, "Femtosecond Soliton Propagation in Fibers with Slowly Decreasing Dispersion," J. Opt. Soc. Am. B 8, 1633-1641 (1991). [CrossRef]
  2. K. Smith and L. F. Mollenauer, "Experimental-Observation of Adiabatic-Compression and Expansion of Soliton Pulses over Long Fiber Paths," Opt. Lett. 14, 751-753 (1989). [CrossRef] [PubMed]
  3. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  4. V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction-limited brightness," in Conference on Lasers and Elctro- Optics Europe, p. 508 (IEEE, Munich, Germany, 2005).
  5. R. E. Kennedy, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "High-peak-power femtosecond pulse compression with polarization-maintaining ytterbium-doped fiber amplification," Opt. Lett. 32, 1199-201 (2007). [CrossRef] [PubMed]
  6. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).Q1 [CrossRef]
  7. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005). [CrossRef] [PubMed]
  8. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, "Compression of Femtosecond Optical Pulses," Appl. Phys. Lett. 40, 761-763 (1982). [CrossRef]
  9. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, "Extreme Picosecond Pulse Narrowing by Means of Soliton Effect in Single-Mode Optical Fibers," Opt. Lett. 8, 289-291 (1983). [CrossRef] [PubMed]
  10. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton Pulse-Compression in Dispersion- Decreasing Fiber," Opt. Lett. 18, 476-478 (1993). [CrossRef] [PubMed]
  11. S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, "Picosecond Soliton Pulse Compressor Based on Dispersion Decreasing Fiber," Electron. Lett. 28, 1842-1844 (1992). [CrossRef]
  12. R. E. Kennedy, S. V. Popov, and J. R. Taylor, "Compact fully fibre integrated source of 100 fs pulses at 1.1 mu m based on compression in holey fibre," Electron. Lett. 41, 234-235 (2005). [CrossRef]
  13. A. Mostofi, H. Hatami-Hanza, and P. L. Chu, "Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers," IEEE J. Quantum Electron. 33, 620-628 (1997). [CrossRef]
  14. K. Tajima, "Compensation of Soliton Broadening in Nonlinear Optical Fibers with Loss," Opt. Lett. 12, 54-56 (1987). [CrossRef] [PubMed]
  15. A. S. Gouveianeto, P. G. J. Wigley, and J. R. Taylor, "Soliton Generation through Raman Amplification of Noise Bursts," Opt. Lett. 14, 1122-1124 (1989). [CrossRef]
  16. P. C. Reeves-Hall, S. A. E. Lewis, S. V. Chenikov, and J. R. Taylor, "Picosecond soliton pulse-duration-selectable source based on adiabatic compression in Raman amplifier," Electron. Lett. 36, 622-624 (2000). [CrossRef]
  17. M. D. Pelusi and H. F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997). [CrossRef]
  18. G. Humbert,W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. S. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Express 14, 1596-1603 (2006). [CrossRef] [PubMed]
  19. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). [CrossRef] [PubMed]
  20. J. C. Travers, A. B. Rulkov, S. V. Popov, J. R. Taylor, A. Kudlinski, A. K. George, and J. C. Knight, "Dispersion- Decreasing PCF for Blue-UV Supercontinuum Generation," in Conference on Lasers and Elctro-Optics, p. CPDA11 (Optical Society of America, Long Beach, CA, USA, 2006).
  21. M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, and D. J. Richardson, "Pulse compression at 1.06 mu m in dispersion-decreasing holey fibers," Opt. Lett. 31, 3504-3506 (2006). [CrossRef] [PubMed]
  22. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Phot. Tech. Lett. 12, 807-809 (2000).Q2 [CrossRef]
  23. M. Midrio, M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: An analytical vectorial solution," J. Lightwave Technol. 18, 1031-1037 (2000). [CrossRef]
  24. K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  25. P. L. Francois, "Nonlinear Propagation of Ultrashort Pulses in Optical Fibers - Total Field Formulation in the Frequency-Domain," J. Opt. Soc. Am. B 8, 276-293 (1991). [CrossRef]
  26. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  27. D. Hollenbeck and C. Cantrell, "Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function," J. Opt. Soc. Am. B 19, 2886-2892 (2002). [CrossRef]
  28. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman Response Function of Silica-Core Fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989). [CrossRef]
  29. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, "Optimal compression of multi-soliton pulses in optical fibers," Sov. Tech. Phys. Lett. 12, 311-313 (1986).Q3
  30. P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, "Adiabatic compression of Schr¨odinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response," Phys. Rev. Lett. 71, 73-76 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited