OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13236–13243

Investigation of optical properties of circular spiral photonic crystals

Nir Grossman, Aleksandr Ovsianikov, Alexander Petrov, Manfred Eich, and Boris Chichkov  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 13236-13243 (2007)
http://dx.doi.org/10.1364/OE.15.013236


View Full Text Article

Enhanced HTML    Acrobat PDF (1678 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photonic bandgap of three-dimensional photonic crystals, formed by arranging circular spirals in face-centre-cubic lattice, was theoretically investigated. The structure was found to have a relative photonic bandgap of up to 25% in both direct and inversed configurations. The conditions under which the structure has a bandgap larger than 10% are described. Some considerations for optimizing such photonic crystal fabrication by two-photon polymerization are given. The theoretical results are implemented to fabricate polymeric structures that can be used as templates for photonic crystals with full photonic bandgap larger than 10% centered in the near-infrared region.

© 2007 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5298) Optical devices : Photonic crystals
(160.5335) Materials : Photosensitive materials

ToC Category:
Photonic Crystals

History
Original Manuscript: August 15, 2007
Revised Manuscript: September 21, 2007
Manuscript Accepted: September 24, 2007
Published: September 27, 2007

Citation
Nir Grossman, Aleksandr Ovsianikov, Alexander Petrov, Manfred Eich, and Boris Chichkov, "Investigation of optical properties of circular spiral photonic crystals," Opt. Express 15, 13236-13243 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987). [CrossRef] [PubMed]
  3. B. Kurt, L. Stefan, W. Ralf, and B. Föll Helmut, Photonic Crystals (Wiley-VCH, Berlin, 2004).
  4. J.-M. Lourtioz, H.i Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer-Verlag Berlin and Heidelberg 2005).
  5. C. T. Chan, K. M. Ho and C. M. Soukoulis, "Photonic bandgaps in experimentally realizable periodic dielectric structures," Europhys. Lett. 16, 563 (1991). [CrossRef]
  6. C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, "A-7 structure: A family of photonic crystals," Phys. Rev. B 50, 1988 (1994). [CrossRef]
  7. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic bandgaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413 (1994). [CrossRef]
  8. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604 (2000). [CrossRef] [PubMed]
  9. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata," Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091 (2003). [CrossRef]
  10. A. Chutinan, and S. Noda, "Spiral three-dimensional photonic-band-gap structure," Phys. Rev B 57, R2006 (1998). [CrossRef]
  11. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-Dimensional Spiral-Architecture Photonic Crystals Obtained By Direct Laser Writing," Adv. Mater. 17, 541 (2005). [CrossRef]
  12. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1 µm," Appl. Phys. Lett. 88, 221101 (2006). [CrossRef]
  13. S. G. Johnson "MIT Photonic-Bands," (Massachusetts Institute of Technology 2002), http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands>
  14. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173 (2001). [CrossRef] [PubMed]
  15. H. B.  Sun, S.  Matsuo, and H.  Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett.  74, 786 (1999). [CrossRef]
  16. J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221 (2004). [CrossRef] [PubMed]
  17. H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, S. Kawata, "Shape precompensation in two-photon nanowriting of photonic lattices," Appl. Phys. Lett. 85, 3708 (2004). [CrossRef]
  18. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444 (2004). [CrossRef] [PubMed]
  19. N. Tétreault,  et al., "New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates," Adv. Mater. 18, 457-460 (2006). [CrossRef]
  20. S. Juodkazis1, V. Mizeikis1, K. Seet1, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005). [CrossRef]
  21. D. Tan,  et al., "Reduction in feature size of two-photon polymerization using SCR500," Appl Phys Lett 90, 071106 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited