OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13295–13303

Laser noise compression by filamentation at 400 nm in argon

Pierre Béjot, Christophe Bonnet, Véronique Boutou, and Jean-Pierre Wolf  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 13295-13303 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (3085 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Filamentation is an efficient way to produce an intense and spectrally broad, but poorly stable, source for coherent control spectroscopy. We first described both theoretically and experimentally the filamentation and broadening of a 410 nm ultrashort laser pulse in Argon. By observing the theoretical and experimental spectral cross-correlation in the filament, we then show that the stability of the source can be improved. The Signal-to-Noise Ratio of the intensity inside the filament is increased up to 7 dB by its spectral filtering which provide a low noise broad spectrum source.

© 2007 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(190.3270) Nonlinear optics : Kerr effect
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: July 17, 2007
Revised Manuscript: August 23, 2007
Manuscript Accepted: August 29, 2007
Published: September 28, 2007

Pierre Béjot, Christophe Bonnet, Véronique Boutou, and Jean-Pierre Wolf, "Laser noise compression by filamentation at 400 nm in argon," Opt. Express 15, 13295-13303 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414, 57–60 (2001). [CrossRef] [PubMed]
  2. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004). [CrossRef]
  3. F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005). [CrossRef]
  4. V. V. Lozovoy, M. Dantus, Coherent control in femtochemistry, Chemphyschem 6, 1970–2000 (2005). [CrossRef] [PubMed]
  5. A.M. Weiner, Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  6. J. P. Ogilvie, D. Dbarre, X. Solinas, J. L. Martin, E. Beaurepaire, M. Joffre, Use of coherent control for selective two-photon fluorescence microscopy in live organisms, Opt. Express 14 (2), 759–766 (2006). [CrossRef] [PubMed]
  7. J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003). [CrossRef] [PubMed]
  8. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002). [CrossRef]
  9. S. Coudreau, D. Kaplan, P. Tournois, Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP, Opt. Lett. 12, 1899–1901 (2006). [CrossRef]
  10. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003). [CrossRef]
  11. F. G. Omenetto, B. P. Luce, A. J. Taylor, Genetic algorithm pulse shaping for optimum femtosecond propagation in optical fibers, J. Opt. Soc. Am. B, 16, 2005–2009 (1999). [CrossRef]
  12. Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on
  13. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004) [CrossRef]
  14. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep. 441, 47–189 (2007). [CrossRef]
  15. G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006). [CrossRef]
  16. S. L. Chin, F. Thberge, W. Liu, Filamentation nonlinear optics, Appl. Phys. B 86, 477–483 (2007). [CrossRef]
  17. S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996). [CrossRef] [PubMed]
  18. S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998). [CrossRef]
  19. L. Boivin, F. X. Kartner, H. A. Haus, Analytical solution to the quantum-field theory of self-phase modulation with a finite response-time, Phys. Rev. Lett. 73, 240–243 (1994). [CrossRef] [PubMed]
  20. T. Opatrny, N. Korolkova, G. Leuchs, Mode structure and photon number correlations in squeezed quantum pulses, Phys. Rev. A 66, 053813 (2002). [CrossRef]
  21. E. Schmidt, L. Knoll, D. G. Welsch, Cumulant expansion for studying damped quantum solitons, Phys. Rev. A 59, 2442–2457 (1999). [CrossRef]
  22. M. Mlejnek, E. M. Wright, J. V. Moloney, Femtosecond pulse propagation in argon: A pressure dependence study, Phys. Rev. E 58, 4903–4910 (1998). [CrossRef]
  23. H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974). [CrossRef]
  24. M. D. Feit, J. A. Fleck, Effect of refraction on spot-size dependence of laser-induced breakdown, Appl. Phys. Lett. 24, 169–172 (1974). [CrossRef]
  25. A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002). [CrossRef]
  26. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical recipies, Cambridge University Press, Cambridge, Numerical Recipies, 1989.
  27. A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999). [CrossRef]
  28. E. R. Peck, D. J. Fischer, Dispersion of argon, J. Opt. Soc. Am. 54, 1362–1364 (1964). [CrossRef]
  29. V. Mizrahi, D. P. Shelton, Dispersion of nonlinear susceptibilities of Ar, N2, and O2 measured and compared, Phys. Rev. Lett. 55, 696–699 (1985). [CrossRef] [PubMed]
  30. Y. P. Raizer, Plasma physics, Springer, Berlin, Plasma Physics (1994).
  31. A. Couairon, L. Berge, Light filaments in air for ultraviolet and infrared wavelengths, Phys. Rev. Lett. 88, 135003 (2002). [CrossRef] [PubMed]
  32. S. Champeaux, L. Berge, Femtosecond pulse compression in pressure-gas cells filled with argon, Phys. Rev. E 68, 066603 (2003). [CrossRef]
  33. T. Brixner, N. H. Damrauer, B. Kiefer, G. Gerber, Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies, J. Chem. Phys. 118, 3692–3701 (2003). [CrossRef]
  34. P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006). [CrossRef]
  35. P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited