OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13434–13445

Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D

Ashley R. Carter, Gavin M. King, and Thomas T. Perkins  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 13434-13445 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



State-of-the-art microscopy techniques (e.g., atomic force microscopy, scanning-tunneling microscopy, and optical tweezers) are sensitive to atomic-scale (100 pm) displacements. Yet, sample drift limits the ultimate potential of many of these techniques. We demonstrate a general solution for sample control in 3D using back-scattered detection (BSD) in both air and water. BSD off a silicon disk fabricated on a cover slip enabled 19 pm lateral localization precision (Δf = 0.1–50 Hz) with low crosstalk between axes (≤3%). We achieved atomic-scale stabilization (88, 79, and 98 pm, in x, y, and z, respectively; Δf = 0.1–50 Hz) and registration (≈50 pm (rms), N = 14, Δt = 90 s) of a sample in 3D that allows for stabilized scanning with uniform steps using low laser power (1 mW). Thus, BSD provides a precise method to locally measure and thereby actively control sample position for diverse applications, especially those with limited optical access such as scanning probe microscopy, and magnetic tweezers.

© 2007 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: August 14, 2007
Revised Manuscript: September 17, 2007
Manuscript Accepted: September 25, 2007
Published: September 28, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Ashley R. Carter, Gavin M. King, and Thomas T. Perkins, "Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D," Opt. Express 15, 13434-13445 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk and W. W. Webb, "Optical measurement of picometer displacements of transparent microscopic objects," Appl. Opt. 29, 2382-2391 (1990). [CrossRef] [PubMed]
  2. G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett. 56, 930-933 (1986). [CrossRef] [PubMed]
  3. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, "7X7 Reconstruction on Si(111) Resolved in Real Space," Phys. Rev. Lett. 50, 120-123 (1983). [CrossRef]
  4. N. H. Thomson, M. Fritz, M. Radmacher, J. P. Cleveland, C. F. Schmidt, and P. K. Hansma, "Protein tracking and detection of protein motion using atomic force microscopy," Biophys. J. 70, 2421-2431 (1996). [CrossRef] [PubMed]
  5. L. Nugent-Glandorf, and T. T. Perkins, "Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection," Opt. Lett. 29, 2611-2613 (2004). [CrossRef] [PubMed]
  6. G. M. King and J. A. Golovchenko, "Probing nanotube-nanopore interactions," Phys. Rev. Lett. 95, 216103 (2005). [CrossRef] [PubMed]
  7. D. M. Eigler and E. K. Schweizer, "Positioning single atoms with a scanning tunnelling microscope," Nature 344, 524-526 (1990). [CrossRef]
  8. Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, and S. Morita, "Atom inlays performed at room temperature using atomic force microscopy," Nature Materials 4, 156-159 (2005). [CrossRef] [PubMed]
  9. E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, "Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging," J. Vac. Sci. Technol. B 23, 2607-2610 (2005). [CrossRef]
  10. E. E. Moon and H. I. Smith, "Nanometer-precision pattern registration for scanning-probe lithographies using interferometric-spatial-phase imaging," J. Vac. Sci. Technol. B 24, 3083-3087 (2006). [CrossRef]
  11. M. Capitanio, R. Cicchi, and F. S. Pavone, "Position control and optical manipulation for nanotechnology applications," Eur. Phys. J. B 46, 1-8 (2005). [CrossRef]
  12. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, "Stabilization of an optical microscope to 0.1 nm in three dimensions," Appl. Opt. 46, 421-427 (2007). [CrossRef] [PubMed]
  13. K. Visscher, S. P. Gross, and S. M. Block, "Construction of Multiple-Beam Optical Traps with Nanometer-Resolution Position Sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996). [CrossRef]
  14. M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, "Determination of the force constant of a single-beam gradient trap by measurement of backscattered light," Appl. Opt. 35, 7112-7116 (1996). [CrossRef] [PubMed]
  15. J. H. G. Huisstede, K. O. van der Werf, M. L. Bennink, and V. Subramaniam, "Force detection in optical tweezers using backscattered light," Opt. Express 13, 1113-1123 (2005). [CrossRef] [PubMed]
  16. U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, "Optical tweezers for force measurements on DNA in nanopores," Rev. Sci. Instrum. 77, 105105 (2006). [CrossRef]
  17. U. F. Keyser, B. N. Koeleman, S. Van Dorp, D. Krapf, R. M. M. Smeets, S. G. Lemay, N. H. Dekker, and C. Dekker, "Direct force measurements on DNA in a solid-state nanopore," Nature Phys. 2, 473-477 (2006). [CrossRef]
  18. J. M. Antonietti, J. Gong, V. Habibpour, M. A. Rottgen, S. Abbet, C. J. Harding, M. Arenz, U. Heiz, and C. Gerber, "Micromechanical sensor for studying heats of surface reactions, adsorption, and cluster deposition processes," Rev. Sci. Instrum. 78, 054101 (2007). [CrossRef] [PubMed]
  19. J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. Oshea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, "A Femtojoule Calorimeter Using Micromechanical Sensors," Rev. Sci. Instrum. 65, 3793-3798 (1994). [CrossRef]
  20. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, "Characterization of photodamage to Escherichia coli in optical traps," Biophys. J. 77, 2856-2863 (1999). [CrossRef] [PubMed]
  21. T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, "Sequence-dependent pausing of single lambda exonuclease molecules," Science 301, 1914-1918 (2003). [CrossRef] [PubMed]
  22. J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometre-scale precision," Nature 331, 450-453 (1988). [CrossRef] [PubMed]
  23. J. Kohler, M. Albrecht, C. R. Musil, and E. Bucher, "Direct growth of nanostructures by deposition through an Si3N4 shadow mask," Physica E 4, 196-200 (1999). [CrossRef]
  24. M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002). [CrossRef] [PubMed]
  25. F. Gittes, and C. F. Schmidt, "Interference model for back-focal-plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998). [CrossRef]
  26. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, "Three-Dimensional High-Resolution Particle Tracking for Optical Tweezers by Forward Scattered Light," Microscopy Res. Tech. 44, 378-386 (1999). [CrossRef]
  27. E. D. Palik, ed. Handbook of optical constants of solids (Academic Press, 1997).
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge University Press, 1992).
  29. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005). [CrossRef] [PubMed]
  30. D. W. Pohl, and R. Moller, "Tracking tunneling microscopy," Rev. Sci. Instrum. 59, 840-842 (1988). [CrossRef]
  31. B. S. Swartzentruber, "Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy," Phys. Rev. Lett. 76, 459-462 (1996). [CrossRef] [PubMed]
  32. M. Abe, Y. Sugimoto, T. Namikawa, K. Morita, N. Oyabu, and S. Morita, "Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy," Appl. Phys. Lett. 90, 203103 (2007). [CrossRef]
  33. C. R. K. Marrian, and E. S. Snow, "Proximal probe lithography and surface modification," Microelectron. Eng. 32, 173-189 (1996). [CrossRef]
  34. M. Radmacher, M. Fritz, H. G. Hansma, and P. K. Hansma, "Direct observation of enzyme activity with the atomic force microscope," Science 265, 1577-1579 (1994). [CrossRef] [PubMed]
  35. D. J. Muller, K. T. Sapra, S. Scheuring, A. Kedrov, P. L. Frederix, D. Fotiadis, and A. Engel, "Single-molecule studies of membrane proteins," Curr. Opin. Struct. Biol. 16, 489-495 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited