OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13585–13596

Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti-Stokes Raman scattering microscopy

Brian G. Saar, Heung-Shik Park, X. Sunney Xie, and Oleg D. Lavrentovich  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 13585-13596 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Liquid crystals are a class of industrially important materials whose optical properties make them useful particularly in display technology. Optical imaging of these materials provides information about their structure and physical properties. Coherent anti-Stokes Raman scattering (CARS) microscopy is used to provide three-dimensional chemical maps of liquid crystalline samples without the use of external labels. CARS is an optical imaging technique that derives contrast from Raman-active molecular vibrations in the sample. Compared to many other three-dimensional imaging techniques, CARS offers more rapid chemical characterization without the use of external dyes or contrast agents. The use of CARS to image chemical and orientational order in liquid crystals is demonstrated using several examples, and the limitations and benefits are discussed.

© 2007 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: August 29, 2007
Revised Manuscript: September 24, 2007
Manuscript Accepted: September 26, 2007
Published: October 2, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Brian G. Saar, Heung-Shik Park, X. S. Xie, and Oleg D. Lavrentovich, "Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti- Stokes Raman scattering microscopy," Opt. Express 15, 13585-13596 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. H. Hartshorn, The Microscopy of Liquid Crystals (Microscope Publications, London, 1974).
  2. J. M. Haudin, in Optical Properties of Polymers, G. H. Meeten, ed., (Elsevier, Essex, 1986).
  3. J. R. Bellare, H. T. Davis, W. G. Miller, and L. E. Scriven, "Polarized Optical Microscopy of Anisotropic Media: Imaging, Theory and Simulations," J. Colloid Interface Sci. 136, 305-326 (1990). [CrossRef]
  4. M. Kleman, and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, New York, 2003).
  5. K. Kaznacheev and T. Hegmann, "Molecular ordering in biaxial smectic-A phase studied by scanning transmission X-ray microscopy (STXM)," Phys. Chem. Chem. Phys. 9, 1705-1712 (2007). [CrossRef] [PubMed]
  6. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, "Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy," Chem. Phys. Lett. 336, 88-96 (2001). [CrossRef]
  7. R. S. Pillai, M. Oh-e, H. Yokoyama, G. J. Brakenhoff, and M. Müller, "Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy," Opt. Express 14, 12976-12983 (2006). [CrossRef] [PubMed]
  8. D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Phase-Matched Third-Harmonic Generation in a Nematic Liquid Crystal Cell," Phys. Rev. Lett. 82, 3046 (1999). [CrossRef]
  9. D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, "Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy," Appl. Phys. Lett. 74, 3107-3109 (1999). [CrossRef]
  10. M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, "Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser Raman microscopy," Jpn. J. Appl. Phys. 45, 1710-1713 (2006). [CrossRef]
  11. E. A. Buyuktanir, K. Zhang, A. Gericke, and J. L. West, "Raman mapping of the orientation of nematic and smectic liquid crystals," in 21st International Liquid Crystal Conference (Keystone, CO, 2006), pp. DFCTP-25.
  12. J. F. Blach, M. Warenghem, and D. Bormann, "Probing thick uniaxial birefringent medium in confined geometry: A polarised confocal micro-Raman approach," Vib. Spectrosc. 41, 48-58 (2006). [CrossRef]
  13. P. Camorani, and M. P. Fontana, "Local three-dimensional characterization of a micro-patterned liquid crystalline cell by confocal Raman microscopy," Mol. Cryst. Liq. Cryst. 465, 143 - 152 (2007). [CrossRef]
  14. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  15. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005). [CrossRef]
  16. X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-735 (2006). [CrossRef] [PubMed]
  17. T. B. Huff, and J. X. Cheng, "In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue," J. Microsc. 225, 175-182 (2007). [CrossRef] [PubMed]
  18. E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, "Chemical imaging of photoresists with coherent anti-Stokes Raman scattering (CARS) microscopy," J. Phys. Chem. B 108, 1296-1301 (2004). [CrossRef]
  19. G. W. H. Wurpel, H. A. Rinia, and M. Müller, "Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy," J. Microsc. 218, 37-45 (2005). [CrossRef] [PubMed]
  20. H. Kano and H. Hamaguchi, "Three-dimensional vibrational imaging of a microcrystalline J-aggregate using supercontinuum-based ultra-broadband multiplex coherent cnti-Stokes Raman scattering microscopy," J. Phys. Chem. B 110, 3120-3126 (2006). [CrossRef] [PubMed]
  21. G. W. H. Wurpel and M. Müller, "Water confined by lipid bilayers: A multiplex CARS study," Chem. Phys. Lett. 425, 336-341 (2006). [CrossRef]
  22. W. J. Jones, "Picosecond inverse Raman spectroscopy of liquid crystals," J. Mol. Struct. 404, 129-136 (1997). [CrossRef]
  23. I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley-Interscience, New Jersey, 1994).
  24. V. A. Enikeeva, V. A. Makarov, I. A. Ozheredov, A. P. Shkurinov, I. A. Budagovsky, V. F. Kitaeva, Zolot, apos, A. S. ko, and M. I. Barnik, "Orienting influence of femtosecond pulses on nematic liquid crystals," Mol. Cryst. Liq. Cryst. 442, 1 - 18 (2005). [CrossRef]
  25. L. M. Blinov, and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, New York, 1994). [CrossRef]
  26. W. J. Jones, D. K. Thomas, D. W. Thomas, and G. Williams. "Raman scattering studies of homogenous and twisted-nematic liquid crystal cells and the determination of ?P2? and ?P4? order parameters." J. Mol. Struct. 614, 75-85, (2002). [CrossRef]
  27. E. V. Astrova, T. S. Perova, S. A. Grudinkin, V. A. Tolmachev, Y. A. Pilyugina, V. B. Voronkov, and J. K. Viji, "Polarized infrared and Raman spectroscopic studies of the liquid crystal E7 alignment in composites based on grooved silicon." Semiconductors. 39, 759-767, (2005). [CrossRef]
  28. J.-X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited