OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13695–13708

Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm

Nannan Cao, Arye Nehorai, and Mathews Jacob  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 13695-13708 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an image reconstruction method for diffuse optical tomography (DOT) by using the sparsity regularization and expectation-maximization (EM) algorithm. Typical image reconstruction approaches in DOT employ Tikhonov-type regularization, which imposes restrictions on the L2 norm of the optical properties (absorption/scattering coefficients). It tends to cause a blurring effect in the reconstructed image and works best when the unknown parameters follow a Gaussian distribution. In reality, the abnormality is often localized in space. Therefore, the vector corresponding to the change of the optical properties compared with the background would be sparse with only a few elements being nonzero. To incorporate this information and improve the performance, we propose an image reconstruction method by regularizing the L1 norm of the unknown parameters and solve it iteratively using the expectation-maximization algorithm. We verify our method using simulated 3D examples and compare the reconstruction performance of our approach with the level-set algorithm, Tikhonov regularization, and simultaneous iterative reconstruction technique (SIRT). Numerical results show that our method provides better resolution than the Tikhonov-type regularization and is also efficient in estimating two closely spaced abnormalities.

© 2007 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Image Processing

Original Manuscript: August 1, 2007
Revised Manuscript: September 26, 2007
Manuscript Accepted: October 2, 2007
Published: October 4, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Nannan Cao, Arye Nehorai, and Mathews Jacobs, "Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm," Opt. Express 15, 13695-13708 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grosenick, T. Moesta, H. Wabnitz, J. Mucke, C. Stroszcynski, R. Macdonald, P. Schlag, and H. Rinnerberg, "Time-domain optical mammography: Initial clinial results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003). [CrossRef] [PubMed]
  2. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. Yodh, and B. Chance, "In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green," Med. Phys. 30, 1039-1047 (2003). [CrossRef] [PubMed]
  3. G. Strangman, D. Boas, and J. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002). [CrossRef] [PubMed]
  4. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997). [CrossRef] [PubMed]
  5. A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems (V. H. Winston Sons, Washington D. C.).
  6. B. Pogue, T. McBride, J. Prewitt, U. Osterberg, and K. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]
  7. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. Boas, "Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-1956 (2005). [CrossRef] [PubMed]
  8. K. D. Paulsen and H. Jiang, "Enhanced frequency-domain optical image reconstruction in tissues through totalvariation minimization," Appl. Opt. 35, 3447-3458 (1996). [CrossRef] [PubMed]
  9. H. Dehghani, B.W. Pogue, S. Jiang, B. A. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: Resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003). [CrossRef] [PubMed]
  10. A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, "Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information," Meas. Sci. Technol. 18, 87-95 (2007). [CrossRef]
  11. M. E. Kilmer, E. L. Miller, D. Boas, and D. Brook, "A shape-based reconstruction technique for DPDW data," Opt. Express 72, 481-491 (2000). [CrossRef]
  12. M. E. Kilmer, E. L. Miller, A. Barbaro, and D. Boas, "Three-dimensional shaped-based imaging of absorption perturbation for diffuse optical tomography," Appl. Opt. 42, 3129-3144 (2003). [CrossRef] [PubMed]
  13. G. Boverman and E. Miller, "Estimation-theoretic algorithms and bounds for three-dimensional polar shapebased imaging in diffuse optical tomography," in Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 1132-1135 (2006).
  14. P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Deterministic edge-perserving regularization in computed imaging," IEEE Trans. Image Process. 6, 298-310 (1997). [CrossRef] [PubMed]
  15. M. A. T. Figueiredo, "Adaptive sparseness for supervised learning," IEEE Trans. Pattern Anal. Mach. Intell. 25, 1150-1159 (2003). [CrossRef]
  16. P. S. Bradley, O. L. Mangasarian, and W. N. Street, "Feature selection via mathematical programming," INFORMS J. Comput. 10, 209-217 (1998). [CrossRef]
  17. D. Malioutov, M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process. 53, 3010-3022 (2005). [CrossRef]
  18. M. Cetin and W. C. Karl, "Feature-enhanced synthetic aperture radar image formation bsed on nonquadratic regularization," IEEE Trans. Image Process. 10, 623-631 (2001). [CrossRef]
  19. I. Gorodnitsky and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. Signal Process. 45, 600-616 (1997). [CrossRef]
  20. K. Matsuura and Y. Okabe, "Selective minimum-norm solution of the biomagnetic inverse problem," IEEE Trans. Biomed. Eng. 42, 608-615 (1995). [CrossRef] [PubMed]
  21. K. Matsuura and Y. Okabe, "A robust reconstruction of sparse biomagnetic sources," IEEE Trans. Biomed. Eng. 44, 720-726 (1997). [CrossRef] [PubMed]
  22. M. Huang, A. Dale, T. Song, E. Halgren, D. Harrington, I. Podgorny, J. Ganive, S. Lewis, and R. Lee, "Vectorbased spatial-temporal minimum L1-norm solution for MEG," NeuroImage 31, 1025-1037 (2006). [CrossRef] [PubMed]
  23. M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11, 064,029-1-12 (2006). [CrossRef]
  24. O. Dorn, "A shape reconstruction method for diffuse optical tomography using a transport model and level sets," in Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 1015-1018 (2006).
  25. R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. R. Stat. Soc. Ser. B 58, 267-288 (1996).
  26. M. A. O’Leary, "Imaging with diffuse photon density waves," Ph.D. thesis, University of Pennsylvania (1996).
  27. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, "A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient," Phys. Med. Biol. 45, 1051-1070 (2000). [CrossRef] [PubMed]
  28. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999). [CrossRef]
  29. K. D. Paulsen and H. Jiang, "Spatially-varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 619-701 (1995). [CrossRef]
  30. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, "Initial assessment of a simple system for frequency domain diffuse optical tomography," Phys. Med. Biol. 40, 1709-1729 (1995). [CrossRef] [PubMed]
  31. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef]
  32. R. Aronson, "Boundary conditions for diffusion of light," J. Opt. Soc. Am. A 12, 2532-2539 (1995). [CrossRef]
  33. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, and M. S. McAdams, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. 10, 2727-2741 (1994). [CrossRef]
  34. J.-J. Fuchs, "On sparse representations in arbitrary redundant bases," IEEE Trans. Inf. Theory 50, 1341-1344 (2004). [CrossRef]
  35. M. A. T. Figueiredo and R. D. Nowak, "An EM algorithm for wavelet-based image restoration," IEEE Transactions on Image Processing 12, 906-916 (2003). [CrossRef]
  36. G. McLachlan and T. Krishnan, EM algorithm and extensions (Wiley, New York).
  37. C. Wu, "One the convergence properties of the EM algorithm," Ann. Stast. 11, 95-103 (1983). [CrossRef]
  38. D. Donoho and I. Johnstone, "Ideal spatial adaptation via wavelet shrinkage," Biometrika 81, 425-455 (1994). [CrossRef]
  39. D. L. Donoho, "De-noising by soft-threshold," IEEE Trans. Inf. Theory 41, 613-627 (1995). [CrossRef]
  40. P. Moulin and J. Liu, "Analysis of multiresolution image denoising schemes uisng generalized-Gaussion and complexity priors," IEEE Trans. Inf. Theory 45, 909-919 (1999). [CrossRef]
  41. S.-J. Kim, K. Koh,M. Lustig, S. Boyd, and D. Gorinevsky, "An efficient method for l1-regularized least squares," IEEE Trans. Sel. Top. Signal Process. (2007).
  42. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, "Threedimensional diffuse optical mammography with ultrasound localization in a human subject," J. Biomed. Opt. 5, 237-247 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited