OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13783–13795

Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes

Mathias Perrin, Yves Quiquempois, Géraud Bouwmans, and Marc Douay  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 13783-13795 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (3749 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article, we deal with new properties of a Solid Core Photonic Bandgap (SC-PBGF) fiber with intersticial air holes (IAHs) in its transverse structure. It has been shown recently, that IAH enlarges its bandgaps (BG), compared to what is observed in a regular SC-PBGF. We shall describe the mechanisms that account for this BG opening, which has not been explained in detail yet. It is then interesting to discuss the role of air holes in the modification of the Bloch modes, at the boundaries of the BG. In particular, we will use a simple method to compute the exact BG diagrams in a faster way, than what is done usually, drawing some parallels between structured fibers and physics of photonic crystals. The very peculiar influence of IAHs on the upper/lower boundaries of the bandgaps will be explained thanks to the difference between mode profiles excited on both boundaries, and linked to the symmetry / asymmetry of the modes. We will observe a modification of the highest index band (nFSM) due to IAHs, that will enable us to propose a fiber design to guide by Total Internal Reflection (TIR) effect, as well as by a more common BG confinement. The transmission zone is deeply enlarged, compared to regular photonic bandgap fibers, and consists in the juxtaposition of (almost non overlapping) BG guiding zones and TIR zone.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Photonic Crystal Fibers

Original Manuscript: April 16, 2007
Revised Manuscript: June 7, 2007
Manuscript Accepted: June 8, 2007
Published: October 5, 2007

Mathias Perrin, Yves Quiquempois, Géraud Bouwmans, and Marc Douay, "Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes," Opt. Express 15, 13783-13795 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding," Opt. Express 15, 325 (2007). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: molding the flow of light, (Princeton: Princeton University Press).
  3. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309 (2005). [CrossRef] [PubMed]
  4. N. M. Litchinister, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243 (2003). [CrossRef]
  5. A. K. Abeeluck, N. M. Litchinitser, C. Headley, B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320 (1999).
  6. T. P. White, R. C. McPhedran, C. Martijn de Sterke, N. M. Litchinister, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibres," Opt. Lett. 27, 1977 (2002). [CrossRef]
  7. T. A. Birks, G. J. Pearce, D.M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483 (2006). [CrossRef] [PubMed]
  8. G. Renversez, P. Boyer and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682 (2006). [CrossRef] [PubMed]
  9. B. T. Kuhlmey, K. Pathmanandavel, R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851 (2006). [CrossRef] [PubMed]
  10. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, D. M. Bird, "An improved photonic bandgap fiber based on an array of rings," Opt. Express 14, 6291 (2006). [CrossRef] [PubMed]
  11. G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, J. Luo, " Design of all-solid Bandgap fiber with improved confinement and bend losses," IEEE Photon. Technol. Lett.  18, 24 (2006). [CrossRef]
  12. A. Betourne, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, M. Douay, "Solid photonic bandgap fiber assisted by and extra air-clad structure for low-loss operation around 1.5 ?m," Opt. Express 15, 316 (2007). [CrossRef] [PubMed]
  13. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452 (2005). [CrossRef] [PubMed]
  14. A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, J. C. Knight, "Hybrid Photonic crystal fiber," Opt. Express 14, 926 (2006). [CrossRef] [PubMed]
  15. A. Betourne, G. Bouwmans, Y. Quiquempois, M. Perrin, M. Douay, "Improvements of solid core photonic bandgap fibers by means of interstitial air holes," Opt. Lett.  32, N 12 (2007). [CrossRef]
  16. J. Laegsgaard and A. Bjarklev, "Doped photonic bandgap fibers for short-wavelength nonlinear devices," Opt. Lett. 28, 783 (2003). [CrossRef] [PubMed]
  17. MPB software, URL: http://ab-initio.mit.edu/mpb/>
  18. J. Broeng, T. Sondergaard, S. E. Barkou, P. M. Barbeito, A. Bjarklev, "Waveguidance by the photonic bandgap effect in optical fibres," J. Opt. A : Pure Appl. Opt. 1, 477 (1999). [CrossRef]
  19. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476 (1998). [CrossRef] [PubMed]
  20. J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks and D. M. Birds, "Solid Photonic Badgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059 (2006). [CrossRef]
  21. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, T. A. Birks and D. M. Birds, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688 (2006). [CrossRef] [PubMed]
  22. A. Yariv, Quantum Electronics, 3rd ed., (John Wiley & Sons 1988) Chap. 22.8 627-640.
  23. C. Kittel, Introduction to Solid State Physics, (Wiley, 2004).
  24. J. P. B’erenger,"A perfectly matched layer for the absorption of electomagnetic waves," J. Comp. Phys. 114, 185 (1994). [CrossRef]
  25. A. Bjarklev, J. Broeng, A. S. Bjarklev, "Photonic Crystal Fibers," (Kluwer Academic Publishers, see section
  26. M. J. F. Digonnet, H. K. Kim, J. Shin, S. Fan, G. S. Kino, " Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers," Opt. Express 12, 1864 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1342 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited