OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13796–13804

Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film

Pavel I. Geshev, Ulrich C. Fischer, and Harald Fuchs  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 13796-13804 (2007)
http://dx.doi.org/10.1364/OE.15.013796


View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On the basis of Maxwell’s equations a light scattering system of axial symmetry is considered, which consists of a nanoparticle, a dipole and a metal film (covering a dielectric support). Nanoparticle (NP) and dipole are situated on an axis of symmetry and the dipole is oriented along the axis and placed between film and nanoparticle. The field enhancement factor F and dipole energy flux D are calculated by the Green’s function method: the initial system of Maxwell’s equations is reduced to a system of boundary integral equations, and solutions are obtained by the boundary element method. Illumination of the scattering system by a radially polarized Bessel light beam causes a field enhancement in the vicinity of the film surface. The metallic NP closely placed at the film surface acts as nano-antenna. Surface plasmons excited in the particle and film convert the incident propagating EM field into non-propagating evanescent near-field. Then the field is confined and strongly enhanced in a particle/film gap. The enhancement of Raman radiation depends on many factors: size and shape of NP, permittivities of all materials, light wavelength, film thickness, angle of light beam, and - very strongly - on the gap distance. The field enhancement in a gap ∼1 nm can be 103 and more and the Raman radiation enhancement factor can reach huge values ∼1010-1012. Whereas for small nanoparticles the field enhancement factor F and the dipole energy flux D do not depend on the direction of the exciting beam and on the angle of emission, a strong influence is found for extended particles. This influence is plausibly explained by a larger overlap between the electric field of the exciting beam or the emitted radiation field with the near field distribution of the nanoparticle leading to higher F and D values, respectively.

© 2007 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(260.6970) Physical optics : Total internal reflection
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: July 6, 2007
Revised Manuscript: August 16, 2007
Manuscript Accepted: August 17, 2007
Published: October 5, 2007

Citation
Pavel I. Geshev, Ulrich C. Fischer, and Harald Fuchs, "Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film," Opt. Express 15, 13796-13804 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1 (1977). [CrossRef]
  2. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783 (1985). [CrossRef]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997). [CrossRef]
  4. S. M. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface enhanced Raman Scattering," Science 275, 1102 (1997). [CrossRef] [PubMed]
  5. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999). [CrossRef]
  6. A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman Spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932 (1999). [CrossRef]
  7. J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538 (1985). [CrossRef]
  8. U. C. Fischer and D. W. Pohl, "Observation of single-particle plasmons by near-field optical microscopy," Phys. Rev. Lett. 62, 458 (1989). [CrossRef] [PubMed]
  9. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159 (1994). [CrossRef] [PubMed]
  10. M. Inoue and K. Ohtaka, "Surface Enhanced Raman Scattering by metal spheres. I. Cluster effect," Phys. Soc. Japan 52, 3853 (1983). [CrossRef]
  11. T. Takemori, M. Inoue, and K. Ohtaka, "Optical response of a sphere coupled to a metal substrate," J. Phys. Soc. Japan 56, 1587 (1987). [CrossRef]
  12. M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope," Appl. Phys. Lett. 76, 3130 (2000). [CrossRef]
  13. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman microscopy," Chem. Phys. Lett. 318, 131 (2000). [CrossRef]
  14. N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, "Near-field enhanced Raman spectroscopy using side illumination optics," J. Appl. Phys. 92, 6983 (2002). [CrossRef]
  15. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005). [CrossRef]
  16. K. Li, M.I. Stockman, and D.J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  17. M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607 (2003). [CrossRef]
  18. A. Downes, D. Salter, and A. Elfick, "Heating effects in tip-enhanced optical microscopy," Opt. Express 14, 5216 (2006). [CrossRef] [PubMed]
  19. P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004). [CrossRef]
  20. P. I. Geshev and K. Dickmann, "Enhanced radiation of a dipole placed between a metallic surface and a nanoparticle," J. Opt. A: Pure Appl. Opt. 8, S161 (2006). [CrossRef]
  21. A. Sommerfeld, Partial differential equations in physics, (Academic Press, New-York, 1967).
  22. F. J. Garcia de Abajo and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B 65, 115418 (2002). [CrossRef]
  23. J. Aizpurua, G.W. Bryant, L. J. Richter, and F.J. Garcia de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005). [CrossRef]
  24. E. Kretschmann,"Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen," Z. Physik,  241, 313 (1971). [CrossRef]
  25. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001). [CrossRef] [PubMed]
  26. T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003). [CrossRef] [PubMed]
  27. K. Sakoda, K. Ohtaka, and E. Hanamura, "Surface enhanced Raman Scattering in attenuated total reflection arrangement," Solid State Comm. 41, 393 (1982). [CrossRef]
  28. B. Pettinger, A. Tadjeddine, and D. M. Kolb, "Enhancement in Raman intensity by use of surface plasmons," Chem. Phys. Lett. 66, 544 (1979). [CrossRef]
  29. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972). [CrossRef]
  30. A. Otto, "On the electronic contribution to single molecule surface enhanced Raman spectroscopy," Indian J. Phys. B 77, 63 (2003).
  31. L. D. Landau and E. M. Lifschiz, Elektrodynamik der Kontinua, (Akademi-Verlag, Berlin,1974).
  32. E. C. Le Ru and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63 (2006). [CrossRef]
  33. L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, New York, 2006).
  34. P. Johansson, "Light emission from a scanning tunneling microscope: Fully retarded calculation," Phys. Rev. B 58, 10823 (1998). [CrossRef]
  35. E. I. Ibragimov and A. G. Malshukov, "Landau damping of plasma oscillations localized near a STM tip apex," Opt. Spectrosc. 76, 350 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited