OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13805–13816

Roughness-induced radiation losses in optical micro or nanofibers

Gaoye Zhai and Limin Tong  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 13805-13816 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Roughness-induced radiation losses in optical micro or nanofibers (MNFs) are investigated using an induced-current model. Loss coefficients of silica, phosphate, tellurite and silicon MNFs with sinusoidal deformations on their surfaces are numerically calculated with respect to typical parameters of the guiding system. Interesting phenomena such as the existence of the loss minima at specific perturbation periods are observed. Results presented in this work may be generalized to all kinds of surface deformation and may provide useful guidelines for both estimating and tailoring waveguiding properties of MNFs.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2400) Fiber optics and optical communications : Fiber properties
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 3, 2007
Revised Manuscript: August 19, 2007
Manuscript Accepted: August 22, 2007
Published: October 5, 2007

Gaoye Zhai and Limin Tong, "Roughness-induced radiation losses in optical micro or nanofibers," Opt. Express 15, 13805-13816 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Ladouceur, "Roughness, inhomogeneity, and integrated optics," J. Lightwave Technol. 15, 1020-1025 (1997). [CrossRef]
  2. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000). [CrossRef]
  3. F. Grillot, L. Vivien, S. Laval, and E. Cassan, "Propagation Loss in Single-Mode Ultrasmall Square Silicon-on-Insulator Optical Waveguides," J. Lightwave. Technol,  24, 891-896 (2006). [CrossRef]
  4. J. Bures and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999). [CrossRef]
  5. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-818 (2003). [CrossRef] [PubMed]
  6. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006). [CrossRef] [PubMed]
  7. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005). [CrossRef]
  8. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, Q. Yang, A. Tsao, and D. R. Yang, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88, 223501 (2006). [CrossRef]
  9. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonics devices," Nano. Lett. 5, 259-262 (2005). [CrossRef] [PubMed]
  10. J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005). [CrossRef] [PubMed]
  11. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005). [CrossRef] [PubMed]
  12. J. Villatoro and D. Monzón-Hernández, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005). [CrossRef] [PubMed]
  13. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005). [CrossRef]
  14. X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007). [CrossRef] [PubMed]
  15. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 89, 143513 (2006). [CrossRef]
  16. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004). [CrossRef] [PubMed]
  17. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers," Opt. Express 14, 9408-9414 (2006). [CrossRef] [PubMed]
  18. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, "Fabrication of submicron-diameter silica fibers using electric strip heater," Opt. Express 14, 5055-5060 (2006). [CrossRef] [PubMed]
  19. V. I. Balykin, K. Hakuta, Fam Le Kien, J. Q. Liang, and M. Morinaga, "Atom trapping and guiding with a subwavelength-diameter optical fiber," Phys. Rev. A 70, 011401 (2004). [CrossRef]
  20. F. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004). [CrossRef]
  21. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007). [CrossRef] [PubMed]
  22. J. Jäckle and K. Kawasaki, "Intrinsic roughness of glass surfaces," J. Phys.: Condens. Matter 7, 4351-4358 (1995). [CrossRef]
  23. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, and A. Tomlinson, T. A. Birks, J. C. Knight and P. St.J. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  24. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Loss in solid-core photonic crystal fibers due to interface roughness scattering," Opt. Express 13, 7779-7793 (2005). [CrossRef] [PubMed]
  25. D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).
  26. D. Marcuse, "Mode conversion caused by diameter changes of round dielectric waveguide," Bell Syst. Tech. J. 48, 3217-3233 (1969).
  27. F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum. Electron. 26, 977-986 (1994). [CrossRef]
  28. E. G. Rawson, "Analysis of scattering from fiber waveguides with irregular core surface," Appl. Opt 13, 2370-2377 (1974). [CrossRef] [PubMed]
  29. D. Marcuse, "Radiation losses of the HE11 mode of a fiber with sinusoidally perturbed core boundary," Appl. Opt. 14, 3021-3025 (1975). [CrossRef] [PubMed]
  30. M. Sumetsky, "How thin can a microfiber be and still guide light?," Opt. Lett. 31, 870-872 (2006). Errata, Opt. Lett. 31, 3577 (2006). [CrossRef] [PubMed]
  31. M. Sumetsky, "Thinnest optical waveguide: experimental test," Opt. Lett. 32, 754-756 (2007). [CrossRef] [PubMed]
  32. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, NY 1983).
  33. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004). [CrossRef] [PubMed]
  34. L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005). [CrossRef]
  35. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, NY 1974).
  36. M. Kolesik, E. M. Wright, and J. V. Moloney, "Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers," Appl. Phys. B 79, 293-300 (2004). [CrossRef]
  37. M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino R, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation," Appl. Phys. B 81, 363-367 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited