OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13913–13923

Real time sensor for monitoring oxygen in radio–frequency plasma applications

V. Milosavljević, R. Faulkner, and M. B. Hopkins  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 13913-13923 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Real time closed loop control of plasma assisted semiconductor manufacturing processes has received significant attention in recent years. Therefore we have developed and tested a customized optical sensor based on buffer gas (argon) actinometry which has been used to determine relative densities of atomic and molecular oxygen in an Ar/O2 radio–frequency ICP chamber. The operation and accuracy of our optical sensor compared favorably with a high resolution commercial spectrometer but at lower cost and exhibited improved actinometric performance over a low resolution commercial spectrometer. Furthermore, threshold tests have been performed on the validity of buffer gas based actinometry in Ar/O2 ICP plasmas where Ar is no longer a trace gas through Xe actinometry. The plasma conditions for which this customized optical sensor can be used for closed loop control have been established.

© 2007 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(120.2440) Instrumentation, measurement, and metrology : Filters
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(130.6010) Integrated optics : Sensors
(300.2140) Spectroscopy : Emission

ToC Category:

Original Manuscript: June 25, 2007
Revised Manuscript: August 15, 2007
Manuscript Accepted: September 11, 2007
Published: October 8, 2007

Vladimir Milosavljevic, R. Faulkner, and M. B. Hopkins, "Real time sensor for monitoring oxygen in radio–frequency plasma applications," Opt. Express 15, 13913-13923 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Lee, G. Severn, L. Oksuz and N. Hershkowitz, "Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma", J. Phys. D: Appl. Phys. 395230-5235 (2006). [CrossRef]
  2. T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004). [CrossRef]
  3. W. Koban, J. D. Koch, R. K. Hanson and C. Schulz, "Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements", Appl. Phys. B: Lasers & Optics 80/2,147-150 (2005). [CrossRef]
  4. J. Amorim, G. Baravian, J. Jolly and M. Touzeau, "Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges", J. Appl. Phys. 76/31487-1493 (1994). [CrossRef]
  5. B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995). [CrossRef]
  6. J. C. Thomaz, J. Amorim and C. F. Souza, "Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges", J. Phys. D: Appl. Phys. 323208-3214 (1999). [CrossRef]
  7. N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia and N. F. Leitea, "OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures", Diamond and Related Materials 9/3-6368-372 (2000). [CrossRef]
  8. J. W. Coburn and M. Chen, "Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density", J. Appl. Phys. 513134-3136 (1980). [CrossRef]
  9. S. De Benedictis, A. Gicquel and F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, (Ed. K. Akashi, A. Kinbara), Tokyo (1987).
  10. P. Macko, P. Veis and G. Cernogora, "Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique", Plasma Sources Sci. Technol. 13251-262 (2004). [CrossRef]
  11. T. Czerwiec, F. Greer and D. B. Graves, "Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry", J. Phys. D: Appl. Phys. 38/244278-4289 (2005). [CrossRef]
  12. NIST - Atomic Spectra Data Base Lines (wavelength order) 2007 - http://physics.nist.gov
  13. M. Lieberman and A Lichtenberg, "Principles of Plasma Discharges and Materials Processing" (New York: Wiley), (1994).
  14. S. Fujimura, K. Shinagawa, M. Nakamura and H. Yano, "Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing", Jpn. J. Appl. Phys. 29/102165-2170 (1990). [CrossRef]
  15. A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994). [CrossRef]
  16. R. W. B. Pearse and A. G. Gaydon, "The identification of molecular spectra", (Chapman & Hall LTD., London) (1941).
  17. C. Guyon, S. Cavadias and J. Amouroux, "Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface", Surf. Coat. Technol. 142-144959-963 (2001). [CrossRef]
  18. R. E. Walkup, K. L. Saeneer and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy", J. Chem. Phys. 842668-2674 (1986). [CrossRef]
  19. J. P. Booth, O. Joubert, J. Pelletier and N. J. Sadeghi, "Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm", J. Appl. Phys. 69618-626 (1991). [CrossRef]
  20. V. Milosavljevic and A R Ellingboe, "Quantum efficiency of Spectrometers", PRL Internal report (Dublin: Dublin City University) (2004).
  21. A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, "Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry", J. Appl. Phys.,  62/3792-798 (1987). [CrossRef]
  22. H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited