OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14013–14027

Single-shot compressive spectral imaging with a dual-disperser architecture

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 14013-14027 (2007)
http://dx.doi.org/10.1364/OE.15.014013


View Full Text Article

Enhanced HTML    Acrobat PDF (855 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a single-shot spectral imaging approach based on the concept of compressive sensing. The primary features of the system design are two dispersive elements, arranged in opposition and surrounding a binary-valued aperture code. In contrast to thin-film approaches to spectral filtering, this structure results in easily-controllable, spatially-varying, spectral filter functions with narrow features. Measurement of the input scene through these filters is equivalent to projective measurement in the spectral domain, and hence can be treated with the compressive sensing frameworks recently developed by a number of groups. We present a reconstruction framework and demonstrate its application to experimental data.

© 2007 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

ToC Category:
Imaging Systems

History
Original Manuscript: July 10, 2007
Revised Manuscript: October 1, 2007
Manuscript Accepted: October 3, 2007
Published: October 11, 2007

Citation
M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, "Single-shot compressive spectral imaging with a dual-disperser architecture," Opt. Express 15, 14013-14027 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-14013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Townsend, J. R. Foster, J. R. A. Chastain, and W. S. Currie, "Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS," IEEE Trans. Geosci. Remote Sens. 41, 1347-1354 (2003). [CrossRef]
  2. W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94 - 102 (2001). [CrossRef]
  3. R. P. Lin, B. R. Dennis, and A. O. B. eds., The Reuven Ramaty High-Energy Solar Spectrscopic Imager (RHESSI) - Mission Description and Early Results (Kluwer Academic Publishers, Dordrecht, 2003). [PubMed]
  4. W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  5. R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001). [CrossRef] [PubMed]
  6. M. Hinnrichs, J. Jensen, and G. McAnally, "Handheld hyperspectral imager for standoff detection of chemical and biological aerosols," Proc. SPIE 5268, 67-78 (2003). [CrossRef]
  7. J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997). [CrossRef]
  8. M. Descour, C. Volin, E. Dereniak, T. Gleeson, M. Hopkins, D. Wilson, and P. Maker, "Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser," Appl. Opt. 36, 3694-3698 (1997). [CrossRef] [PubMed]
  9. M. E. Gehm and D. J. Brady, "High-throughput hyperspectral microscopy," Proc. SPIE 6090, 13-21 (2006).
  10. M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006). [CrossRef] [PubMed]
  11. S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spectrosc. 60, 663-671 (2006). [CrossRef] [PubMed]
  12. E. Cull, M. Gehm, D. Brady, C. Hsieh, O. Momtahan, and A. Adibi, "Dispersion multiplexing with broadband filtering for miniature spectrometers," Appl. Opt. 46, 365-374 (2007). [CrossRef] [PubMed]
  13. C. Fernandez, B. Guenther, M. Gehm, D. Brady, and M. Sullivan, "Longwave infrared (LWIR) coded aperture dispersive spectrometer," Opt. Express 15, 5742-5753 (2007). [CrossRef] [PubMed]
  14. M. E. Gehm, D. J. Brady, N. Pitsianis, and X. Sun, "Compressive sampling strategies for integrated microspectrometers," Proc. SPIE, 6232 (SPIE, 2006).
  15. D. J. Brady and M. E. Gehm, "Compressive imaging spectrometers using coded apertures," Proc. SPIE, 6246 (SPIE, 2006). [CrossRef]
  16. R. M. Willet, M. E. Gehm, and D. J. Brady, "Multiscale reconstruction for computational spectral imaging," Proc. SPIE, 6498 (SPIE-IS and Electronic Imaging, 2007). [CrossRef]
  17. E. Cand`es, J. Romberg, and T. Tao, "Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information," IEEE Trans. Inf. Theory 52, 489 - 509 (2006). [CrossRef]
  18. E. Candes and T. Tao, "Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies," (2006). To be published in IEEE Trans. Inf. Theory. http://www.acm.caltech.edu/ emmanuel/ papers/OptimalRecovery.pdf>.
  19. D. Donoho, "Compressed Sensing," IEEE Trans. Inf. Theory 52, 1289-1306 (2006). [CrossRef]
  20. M. Harwit and N. Sloane, Hadamard Transform Optics (Academic Press, New York, 1979).
  21. E. Cand`es, J. Romberg, and T. Tao, "Stable Signal Recovery from Incomplete and Inaccurate Measurements," Commun. Pure Appl. Math. 59, 1207-1223 (2006). [CrossRef]
  22. J. Haupt and R. Nowak, "Signal Reconstruction from Noisy Random Projections," (2006). To be published in IEEE Trans. Inf. Theory. http://www.ece.wisc.edu/ nowak/infth.pdf>.
  23. W. Richardson, "Bayesian-based iterative method of image restoration," J. Opt. Soc. of Am. 62, 55-59 (1972). [CrossRef]
  24. L. B. Lucy, "An iterative technique for the rectification of observed distributions," Astron. J. 79, 745-754 (1974). [CrossRef]
  25. R. Nowak and E. Kolaczyk, "A Multiscale Statistical Framework for Poisson Inverse Problems," IEEE Trans. Inf. Theory 46, 1811-1825 (2000). [CrossRef]
  26. R. Willett, "Multiscale intensity estimation for marked Poisson processes," in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2007).
  27. E. Kolaczyk and R. Nowak, "Multiscale Likelihood Analysis and Complexity Penalized Estimation," Annals of Stat. 32, 500-527 (2004). [CrossRef]
  28. R. Willett and R. Nowak, "Fast Multiresolution Photon-Limited Image Reconstruction," in Proc. IEEE Int. Sym. Biomedical Imaging — ISBI ’04 (15-18 April, Arlington, VA, USA, 2004).
  29. M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells, "Noise reduction using an undecimated discrete wavelet transform," IEEE Signal Processing Lett. 3, 10-12 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (926 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited