OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14115–14122

Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path

Arnold Tunick  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 14115-14122 (2007)
http://dx.doi.org/10.1364/OE.15.014115


View Full Text Article

Enhanced HTML    Acrobat PDF (511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental research is conducted to determine the characteristic behavior of high frequency laser signal intensity data collected over a 2.33 km optical path. Results focus mainly on calculated power spectra and frequency distributions. In addition, a model is 2 developed to calculate optical turbulence intensity (Cn 2) as a function of receiving and transmitting aperture diameter, log-amplitude variance, and path length. Initial comparisons of calculated to measured Cn 2 data are favorable. It is anticipated that this kind of signal data analysis will benefit laser communication systems development and testing at the U.S. Army Research Laboratory (ARL) and elsewhere.

© 2007 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: July 31, 2007
Revised Manuscript: October 1, 2007
Manuscript Accepted: October 6, 2007
Published: October 11, 2007

Citation
Arnold Tunick, "Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path," Opt. Express 15, 14115-14122 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-14115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Tatarski, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, 1971).
  2. T. Chiba, "Spot dancing of the laser beam propagated through the turbulent atmosphere," Appl. Opt. 10, 2456-2461 (1971). [CrossRef] [PubMed]
  3. D. L. Fried, G. E. Mevers, and M. P. Keister, "Measurements of laser beam scintillation in the atmosphere," J. Opt. Soc. Am. 57, 787-797 (1967). [CrossRef]
  4. A. Ishimaru, "The beam wave case and remote sensing," in Laser Beam Propagation in the Atmosphere, (Springer-Verlag, 1978), pp. 129-170 [CrossRef]
  5. G. Parry, "Measurement of atmospheric turbulence induced intensity fluctuation in a laser beam," Opt. Acta. 28, 715-728 (1981). [CrossRef]
  6. Y. Han Oh, J. C. Ricklin, E. S. Oh and F. D. Eaton, "Evaluating optical turbulence effects on free-space laser communication: modeling and measurements at ARL’s A_LOT facility," Proc. SPIE 5550, 247-255 (2004). [CrossRef]
  7. G. W. Carhart, M. A. Vorontsov, L. A. Beresnev, P. S. Paicopolis, and F. K. Beil, "Atmospheric laser communication system with wide-angle tracking and adaptive compensation," Proc. SPIE 5892, 346-357 (2005). [CrossRef]
  8. A. Tunick, "Statistical analysis of optical turbulence intensity over a 2.33 km propagation path," Opt. Express 15, 3619-3628 (2007). [CrossRef] [PubMed]
  9. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, Bellingham, 2001). [CrossRef]
  10. J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, "Atmospheric channel effects on free-space laser communication," J. Opt. Fiber Commun. Rep. 3, 111-158 (2006). [CrossRef]
  11. D. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, "Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor," Opt. Lett. 17, 1737-1739 (1992). [CrossRef] [PubMed]
  12. C. Rao, W. Jiang, and N. Ling, "Atmospheric parameters measurements for non-Kolmogorov turbulence with Shack-Hartmann wavefront sensor," Proc. SPIE 3763, 84-91 (1999). [CrossRef]
  13. M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, "Preliminary experimental evidence of anisotrophy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics," Proc. SPIE 3762, 396-406 (1999). [CrossRef]
  14. M. Vorontsov, G. Carhart, M. Banta, T. Weyrauch, J. Gowens, and J. Carrano, "Atmospheric Laser Optics Testbed (A_LOT): Atmospheric propagation characterization, beam control, and imaging results," Proc. SPIE 5162, 37-48 (2003). [CrossRef]
  15. A. Tunick, "Modeling microphysical influences on optical turbulence in complex areas," Meteorol. Atmos. Phys. 96, 293-304 (2007). [CrossRef]
  16. T. Weyrauch and M. A. Vorontsov, "Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications," Appl. Opt. 44, 6388-6401 (2005). [CrossRef] [PubMed]
  17. User’s Guide. LOA-004-xR Long Baseline Optical Anemometer and Atmospheric Turbulence Sensor. Revision 3/20/2003. Optical Scientific, Inc., Gaithersburg, MD (2003). http://www.opticalscientific.com/
  18. Operating Instructions. Model 81000 Ultrasonic Anemometer. Revision 01/24/2007, R.M. Young Co., Traverse City, MI (2007). http://www.youngusa.com/
  19. A. N. Kolmogorov, "The local structure of turbulence in incompressible viscous fluids for very large Reynolds’ numbers," in Turbulence, Classic Papers on Statistical Theory (Wiley-Interscience, New York, 1961), 151-155.
  20. G. K. Batchelor, I. D. Howells, and A. A. Townsend, "Small-scale variation of convected quantities like temperature in turbulent fluid. Part II: The case of large conductivity," J. Fluid Mech. 5, 134-139 (1959). [CrossRef]
  21. R. H. Kraichnan, "Small-scale structure of a scalar field convected by turbulence," Phys. Fluids 11, 945-953 (1968). [CrossRef]
  22. T. Elperin, N. Kleeorin, and I. Rogachevskii, "Isotropic and anisotropic spectra of passive scalar fluctuations in turbulent fluid flow," Phys. Rev. E 53, 3431-3441 (1996). [CrossRef]
  23. E. Golbraikh and N. S. Kopeika, "Behavior of structure function of refraction coefficients in different turbulent fields," Appl. Opt. 43, 6151-6156 (2004). [CrossRef] [PubMed]
  24. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, "Optical propagation in non-Kolmogorov atmospheric turbulence," Proc. SPIE 2471, 181-196 (1995). [CrossRef]
  25. R. Rao, S. Wang, X. Liu, and Z. Gong, "Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere," J. Opt. Soc. Am. 16, 2755-2762 (1999). [CrossRef]
  26. T-i Wang, G. R. Ochs, and S. F. Clifford, "A saturation-resistant optical scintillometer to measure Cn2," J. Opt. Soc. Am. 68, 334-338 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited