OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14129–14145

Plasmonic nanoclusters: a path towards negative-index metafluids

Yaroslav A. Urzhumov, Gennady Shvets, Jonathan Fan, Federico Capasso, Daniel Brandl, and Peter Nordlander  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 14129-14145 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce the concept of metafluids — liquid metamaterials based on clusters of metallic nanoparticles which we will term Artificial Plasmonic Molecules (APMs). APMs comprising four nanoparticles in a tetrahedral arrangement have isotropic electric and magnetic responses and are analyzed using the plasmon hybridization (PH) method, an electrostatic eigenvalue equation, and vectorial finite element frequency domain (FEFD) electromagnetic simulations. With the aid of group theory, we identify the resonances that provide the strongest electric and magnetic response and study them as a function of separation between spherical nanoparticles. It is demonstrated that a colloidal solution of plasmonic tetrahedral nanoclusters can act as an optical medium with very large, small, or even negative effective permittivity, εeff, and substantial effective magnetic susceptibility, χeff = μeff - 1, in the visible or near infrared bands. We suggest paths for increasing the magnetic response, decreasing the damping, and developing a metafluid with simultaneously negative εeff and μeff.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(350.3618) Other areas of optics : Left-handed materials

ToC Category:

Original Manuscript: August 2, 2007
Revised Manuscript: September 7, 2007
Manuscript Accepted: September 8, 2007
Published: October 11, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Yaroslav A. Urzhumov, Gennady Shvets, Jonathan A. Fan, Federico Capasso, Daniel Brandl, and Peter Nordlander, "Plasmonic nanoclusters: a path towards negative-index metafluids," Opt. Express 15, 14129-14145 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Metiu, "Surface enhanced spectroscopy," Prog. Surf. Sci. 17, 153 (1984). [CrossRef]
  2. G. C. Schatz and R. P. van Duyne, "Electromagnetic mechanism of surface-enhanced spectroscopy," in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds., (John Wiley, Chichester, 2002) pp. 1-16.
  3. M. Moskovits, L. Tay, J. Yang, and T. Haslett, "SERS and the single molecule," Top. Appl. Phys. 82, 215 (2002). [CrossRef]
  4. J. B. Jackson and N. J. Halas, "Surface Enhanced Raman Scattering on tunable plasmonic nanoparticle substrates," Proc. Nat. Acad. Sci. USA 101, 17,930 (2004). [CrossRef] [PubMed]
  5. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007). [CrossRef] [PubMed]
  6. D. J. Anderson and M. Moskovits, "A SERS-active system based on silver nanoparticles tethered to a deposited silver film," J. Phys. Chem. B 110, 13,722 (2006). [CrossRef] [PubMed]
  7. P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole simulation, and exciton coupling model," J. Phys. Chem. B 110, 18,243 (2006). [CrossRef] [PubMed]
  8. V. Manoharan, M. Elsesser, and D. Pine, "Dense Packing and Symmetry in Small Clusters of Microspheres," Science 301, 483 (2003). [CrossRef] [PubMed]
  9. G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, "Colloidal Clusters of Silica or Polymer Microspheres," Adv. Mater. 16, 1204 (2004). [CrossRef]
  10. V. N. Manoharan and D. J. Pine, "Building materials by packing spheres," Mater. Res. Bull. 29, 91 (2004). [CrossRef]
  11. Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine, and S.-M. Yang, "Colloidal Clusters of Microspheres from Water-in-Oil Emulsions," Chem. Mater. 17, 5006 (2005). [CrossRef]
  12. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 (2006). [CrossRef] [PubMed]
  13. M. I. Stockman, K. Li, S. Brasselet, and J. Zyss, "Octupolar metal nanoparticles as optically driven coherently controlled nanorotors," Chem. Phys. Lett. 433, 130-135 (2006). [CrossRef]
  14. W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller, "Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition," Phys. Rev. E 58, 6073 (1998). [CrossRef]
  15. O. N. Singh and A. Lakhtakia, eds., Electromagnetic Waves in Unconventional Materials and Structures (John Wiley, New York, 2000).
  16. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanoparticles," Science 302, 419 (2003). [CrossRef] [PubMed]
  17. D. J. Bergman and D. Stroud, "Theory of resonances in the electromagnetic scattering by macroscopic bodies," Phys. Rev. B 22, 3527 (1980). [CrossRef]
  18. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B 72, 155,412 (2005). [CrossRef]
  19. E. Prodan and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. Chem. Phys. 120, 5444 (2004). [CrossRef] [PubMed]
  20. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, "Plasmonic Nanostructures: Artificial Molecules," Acc. Chem. Res. 40, 53-62 (2007). [CrossRef] [PubMed]
  21. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2004). [CrossRef] [PubMed]
  22. Y. Urzhumov and G. Shvets, "Applications of Nanoparticle Arrays to Coherent Anti-Stokes Raman Spectroscopy of Chiral Molecules," Proc. SPIE 5927, 1D-1 (2005). [CrossRef]
  23. D. Korobkin, Y. Urzhumov, B. NeunerIII, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, "Mid-infrared metamaterial based on perforated SiC membrane: Engineering optical response using surface phonon polaritons," Appl. Phys. A 88, 605-609 (2007). [CrossRef]
  24. Y. Urzhumov, D. Korobkin, B. NeunerIII, C. Zorman, and G. Shvets, "Optical Properties of Sub-Wavelength Hole Arrays in SiC Membranes," J. Opt. A: Pure Appl. 9, S1-S12 (2007).
  25. D.W. Brandl, N. A. Mirin, and P. Nordlander, "Plasmon modes of nanosphere trimers and quadrumers," J. Phys. Chem. B 110, 12,302 (2006). [CrossRef] [PubMed]
  26. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Mass., 1963).
  27. A. K. Sarychev, G. Shvets, and V. M. Shalaev, "Magnetic plasmon resonance," Phys. Rev. E 73, 036,609 (2006). [CrossRef]
  28. G. Shvets and Y. Urzhumov, "Negative index meta-materials based on two-dimensional metallic structures," J. Opt. A: Pure Appl. Opt. 8, S122-S130 (2006). [CrossRef]
  29. V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, "Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites," Opt. Express 14, 11,164 (2006). [CrossRef] [PubMed]
  30. G. Shvets and Y. Urzhumov, "Engineering the Electromagnetic Properties of Periodic Nanostructures using Electrostatic Resonances," Phys. Rev. Lett. 93, 243,902 (2004). [CrossRef] [PubMed]
  31. G. Shvets and Y. Urzhumov, "Electric and magnetic properties of sub-wavelength plasmonic crystals," J. Opt. A: Pure Appl. Opt. 7, S23-S31 (2005). [CrossRef]
  32. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  33. I. D. Mayergoyz and Z. Zhang, "The Computation of Extinction Cross-sections of Resonant Metallic Nanoparticles Subject to Optical Radiation," IEEE Trans. Magn. PF4-1, CEFC10,037 (2006).
  34. Y. Urzhumov and G. Shvets, "Quasistatic effective medium theory of plasmonic nanostructures," to appear in Proc. SPIE (2007). [CrossRef]
  35. P. Markos and C. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Opt. Express 11, 649 (2003). [CrossRef] [PubMed]
  36. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036,617 (2005). [CrossRef]
  37. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065,602 (2003). [CrossRef]
  38. A. L. Efros, "Comment II on "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials"," Phys. Rev. E 70, 048,602 (2004). [CrossRef]
  39. C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, "Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction," J. Chem. Phys. 83, 4717 (1985). [CrossRef]
  40. D. Kang and N. A. Clark, "Fast Growth of Silica Colloidal Crystals," J. Korean Phys. Soc. 41, 817 (2002).
  41. P. N. Pusey and W. van Megen, "Phase behaviour of concentrated suspensions of nearly hard colloidal spheres," Nature 320, 340 (1986). [CrossRef]
  42. A. Kassiba, M. Makowska-Janusik, J. Boucle, J. F. Bardeau, A. Bulou, N. Herlin, M. Mayne, and X. Armand, "Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles," Diamond Relat. Mater. 11, 1243 (2002). [CrossRef]
  43. D. Korobkin, Y. Urzhumov, C. Zorman, and G. Shvets, "Far Field Detection of the Super-Lensing Effect in Mid-Infrared: Theory and Experiment," J. Mod. Opt. 52, 2351 (2005). [CrossRef]
  44. D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in mid-infrared using metamaterials," J. Opt. Soc. Am. B 23, 468 (2006). [CrossRef]
  45. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited