OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14171–14176

Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals

Paolo Minzioni, Ilaria Cristiani, Jin Yu, Jacopo Parravicini, Edvard P. Kokanyan, and Vittorio Degiorgio  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 14171-14176 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of birefringence, second-harmonic phase-matching conditions, and nonlinear coefficient d31 are performed for a set of Hafnium-doped congruent lithium niobate (Hf:cLN) crystals as functions of dopant concentration. The data highlight that the threshold concentration, above which there is a change in the Hf incorporation mechanism, is slightly above 2mol% and that, up to this value of concentration, the efficiency of nonlinear processes is not affected by the dopant insertion. Combining these results with those already present in literature, Hf:cLN crystals appear to be very promising candidates for the development of photorefractivity-free wavelength converters working at room temperature.

© 2007 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials
(190.0190) Nonlinear optics : Nonlinear optics
(260.1440) Physical optics : Birefringence

ToC Category:

Original Manuscript: July 20, 2007
Revised Manuscript: October 1, 2007
Manuscript Accepted: October 3, 2007
Published: October 12, 2007

Paolo Minzioni, Ilaria Cristiani, Jin Yu, Jacopo Parravicini, Edvard P. Kokanyan, and Vittorio Degiorgio, "Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals," Opt. Express 15, 14171-14176 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998). [CrossRef]
  2. I. Cristiani and V. Degiorgio, "Optical frequency conversion through cascaded nonlinear processes," Riv Nuovo Cimento 27, 1-49 (2004).
  3. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, "All-optical signal processing using ?(2) nonlinearities in guided-wave devices," J. Lightwave Technol. 24, 2579-2592 (2006). [CrossRef]
  4. P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental demonstration of nonlinearity and dispersion compensation into an embedded link by optical phase conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006). [CrossRef]
  5. D. Caccioli, A. Paoletti, A. Schiffini, A. Galtarossa, P. Griggio, G. Lorenzetto, P. Minzioni, S. Cascelli, M. Guglielmucci, L. Lattanzi, F. Matera, G. M. Tosi Beleffi, V. Quiring, W. Sohler, H. Suche, S. Vehovc, and M. Vidmar, "Field demonstration of in-line all-optical wavelength conversion in a WDM dispersion managed 40-Gbit/s link," IEEE J. Sel. Topics Quantum. Electron. 10, 356-362 (2004). [CrossRef]
  6. T. R. Volk and M. Woehlecke, "Optical damage resistance in lithium niobate crystals," Ferroelectrics Review 1, 195-262 (1998).
  7. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, H. and Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163-3165 (2001). [CrossRef]
  8. N. E. Yu, S. Kurimura, K. Kitamura, J. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003). [CrossRef]
  9. S. V. Tovstonog, S. Kurimura, and K. Kitamura, "High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate" Appl. Phys. Lett. 90, 051115 (2007). [CrossRef]
  10. X. He and D. Xue, "Doping mechanism of optical-damage-resistant ions in lithium niobate crystals" Opt. Commun. 265, 537-541 (2006). [CrossRef]
  11. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, "Photorefractivity of hafnium-doped congruent lithium niobate crystals" Appl. Phys. Lett. 86, 131914 (2005). [CrossRef]
  12. P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, "Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals," J. Appl. Phys. 101, 116105 (2007). [CrossRef]
  13. S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, "The optical damage resistance and absorption spectra of LiNbO3:Hf crystals," J. Phys. Condens. Matter 18, 3527 (2006). [CrossRef]
  14. P. Galinetto, F. Rossella, P. Minzioni, L. Razzari, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, "MicroRaman and photorefractivity study of Hafnium-doped lithium-niobate crystals," J. Nonlinear Opt. Phys. Mater. 15, 9-21 (2006). [CrossRef]
  15. U. Schlarb and K. Betzler, "Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate," Phys. Rev. B 50, 751-757 (1994). [CrossRef]
  16. J. Yu, D. Grando, L. Tartara, and V. Degiorgio, "Widely tunable optical parametric oscillator driven by a diode-pumped nonlinear-mirror mode-locked Nd:YAG laser" Opt. Commun. 260, 257-264 (2006). [CrossRef]
  17. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients" J. Opt. Soc. Am. B 14, 2268-2294 (1997). [CrossRef]
  18. D. Xue and S. Zhang, "Chemical bond analysis of the correlation between crystal structure and nonlinear optical properties of complex crystals" Physica B 262, 78-83 (1999). [CrossRef]
  19. D. Xue and K. Betzler, "Influence of optical-damage-resistant dopants on the nonlinear optical properties of lithium niobate" Appl. Phys. B 72, 641-645 (2001). [CrossRef]
  20. N. Iyi, K. Kitamura, Y. Yajima S. Kimura, Y. Furukawa and M. Sato, "Defect structure model of MgO-doped LiNbO3" J. Solid State Chem. 118, 148-152 (1995). [CrossRef]
  21. S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, "Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 codoping" Appl. Phys. Lett. 89, 101126 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited