OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14177–14183

Localized surface plasmon nanolithography with ultrahigh resolution

Xingzhan Wei, Xiangang Luo, Xiaochun Dong, and Chunlei Du  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 14177-14183 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A localized surface plasmon nanolithography (LSPN) technique is proposed and demonstrated to produce patterns with a sub-20nm line width. High transmission efficiency is realized by adjusting the period of grating. The well-regulated grating structures in metallic mask are employed to excite surface plasmon polaritons (SPPs) on the illuminated side. The SPP waves propagate toward the tip along the taper surfaces which cause most of energy accumulation at the tip and give rise to high local field enhancements in a near-field region around the tip. The amplitude of local electric field intensity is quite large and the line width can be confined within sub-20nm, at the same time, the contrast and spatial resolution are greatly enhanced, which can facilitate nanolithography efficiently with simple ultraviolet light sources.

© 2007 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: July 27, 2007
Revised Manuscript: September 22, 2007
Manuscript Accepted: September 22, 2007
Published: October 12, 2007

Xingzhan Wei, Xiangang Luo, Xiaochun Dong, and Chunlei Du, "Localized surface plasmon nanolithography with ultrahigh resolution," Opt. Express 15, 14177-14183 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Melngailis, "Focused ion beam lithography," Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993). [CrossRef]
  2. S. Y.  Chou, P. R.  Krauss, and P. J.  Renstrom, "Imprint lithography with 25-nanometer resolution," Science  272, 85-87 (1996). [CrossRef]
  3. M. C. McAlpine, R. S. Friedman, and C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003). [CrossRef]
  4. H. Zhang, S. W. Chung, and C. A. Mirkin, "Fabrication of sub-50 nm Solid-State. Nanostructures Based on Dip-Pen Nanolithography," Nano Lett. 1, 43-45 (2003). [CrossRef]
  5. M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999). [CrossRef]
  7. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  8. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express. 12, 3055-3065 (2004). [CrossRef] [PubMed]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004). [CrossRef]
  10. W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004). [CrossRef]
  11. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  12. D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107/1-3(2005). [CrossRef]
  13. M. I.  Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404/1-4 (2004). [CrossRef] [PubMed]
  14. A. V. Zayats and I. I. Smolyaninov, "Near-field photonic: surface plasmon polaritons and locallized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003). [CrossRef]
  15. D. L. Mills, "Theory of STM-induced enhancement of dynamic dipole moments on crystal surfaces," Phys. Rev. B 65, 125419/1-11 (2002). [CrossRef]
  16. I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, "Single-Photon Tunneling via Localized Surface Plasmons," Phys. Rev. Lett. 88, 187402/1-4 (2002). [CrossRef] [PubMed]
  17. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  18. F. J. Garcýá-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901/1-4 (2003). [CrossRef] [PubMed]
  19. Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005). [CrossRef] [PubMed]
  20. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 71, 3773-3775 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited