OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14202–14212

Tomographic reconstruction of weak, replicated index structures embedded in a volume

Amy C. Sullivan and Robert R. McLeod  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 14202-14212 (2007)
http://dx.doi.org/10.1364/OE.15.014202


View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurements of weak, embedded index structures are important for material characterization of photopolymers, glass and other optical materials as well as for characterization of fabricated structures such as waveguides. We demonstrate an optical diffraction tomography system capable of measuring deeply-buried, weak, fabricated index structures written in a homogeneous volume. High-fidelity cross sections of these weak index structures are constructed by replicating the structure to be measured to form a diffraction grating. The coherent addition of scattering from each of these objects increases the sensitivity of the imaging system. Measurements are made in the far field, without the use of lenses, eliminating phase aberration errors through thick volumes.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(110.6960) Imaging systems : Tomography

ToC Category:
Imaging Systems

History
Original Manuscript: August 9, 2007
Revised Manuscript: October 5, 2007
Manuscript Accepted: October 10, 2007
Published: October 12, 2007

Citation
Amy C. Sullivan and Robert R. McLeod, "Tomographic reconstruction of weak, replicated index structures embedded in a volume," Opt. Express 15, 14202-14212 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-14202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, W. L. Wilson, "Holographic data storage media for practical systems," Proc. SPIE 5005, 29-37 (2003). [CrossRef]
  2. R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," Proc. SPIE 2689, 127-141 (1996). [CrossRef]
  3. W. S. Colburn and K. A. Haines, ‘‘Volume hologram formation in photopolymer materials,’’Appl. Opt. 10, 1636-1641 (1971). [CrossRef] [PubMed]
  4. G. Zhao and P. Mouroulis, ‘‘Diffusion model of hologram formation in dry photopolymer materials,’’J. Mod. Opt. 41, 1929-1939 (1994). [CrossRef]
  5. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, "Quantitative model of volume hologram formation in photopolymers," J. Appl. Phys. 81, 5913-5923 (1997). [CrossRef]
  6. J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
  7. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic multilayer optical disk data storage," Appl. Opt. 44, 3197-3207 (2005). [CrossRef] [PubMed]
  8. B. L. Booth, "Low loss channel waveguides in polymers," J. Lightwave Technol. 7, 1445-1453 (1989). [CrossRef]
  9. A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996). [CrossRef] [PubMed]
  10. M. Yonemura, A. Kawasaki, S. Kato, and M. Kagami, "Polymer waveguide module for visible wavelength division multiplexing plastic optical fiber communication," Opt. Lett. 30, 2206-2208 (2005). [CrossRef] [PubMed]
  11. A. C. Sullivan, M. W. Grabowski, R. R. McLeod, "Three-dimensional direct-write lithography into photopolymer," Appl. Opt.  46, 295-301 (2007). [CrossRef]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  13. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002). [CrossRef] [PubMed]
  14. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005). [CrossRef] [PubMed]
  15. M. Pluta, Advanced Light Microscopy Vol. 2. Specialized Methods, (Elsevier, NY 1989), pp. 146-197.
  16. C. J. Cogswell and C. J. R. Sheppard, "Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging," J. Microsc. 165, 81-101 (1992). [CrossRef]
  17. S. V. King, Department of Electrical and Computer Engineering, University of Colorado, Campus Box 425, Boulder, CO 80309, USA, A. Libertun, C. Preza, R. Piestun, and C. J. Cogswell are preparing a manuscript to be called "Quantitative phase microscopy through differential interference imaging."
  18. C. J. R. Sheppard and D. M. Shotton, Confocal laser scanning microscopy, (BIOS Scientific, 1997).
  19. T. Wilson, Y. Kawata, and S. Kawata, "Readout of three-dimensional optical memories," Opt. Lett. 21, 1003-1005 (1996). [CrossRef] [PubMed]
  20. C. J. Cogswell, and J. W. O’Byrne, "High-resolution confocal transmission microscope, Part I: system design," Proc. SPIE 1660, 503-511 (1992). [CrossRef]
  21. M. J. Booth, M. A. A. Neil, R. Juskaitis, T. Wilson, "Adaptive aberration correction in a confocal microscope," Proceedings of the National Academy of Sciences 99, 5788-5792 (2002). [CrossRef]
  22. M. M. Woolfson, An introduction to X-ray crystallography, ed. 2 (Cambridge University Press, 1997). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics, ed. 7 (Cambridge University Press, 1999).
  24. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  25. B. Chen and J. J. Stamnes, "Validity of diffraction tomography based on the first Born and the first Rytov approximations," Appl. Opt. 37, 2996-3006 (1998). [CrossRef]
  26. R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, "Low-Loss Acousto-Optic Photonic Switch," in Acousto-Optic Signal Processing Theory and Implementation, N. J. Berg and J. M. Pellegrino, eds. (Marcel Dekker, 1996), pp. 479 - 573.
  27. S. X. Pan and A. C. Kak, "A computation study of reconstruction algorithms for Diffraction Tomography: Interpolation versus Filtered Backpropagation," IEEE Trans. Acoust. Speech Signal Process. ASSP-31, 1262-1275 (1983). [CrossRef]
  28. A. J. Devaney, "A Filtered Backpropagation Algorithm for Diffraction Tomography," Ultrasonic Imaging 4, 336-350 (1982). [CrossRef] [PubMed]
  29. T. C. Wedberg and J. J. Stamnes, "Comparison of phase retrieval methods for optical diffraction tomography," Pure Appl. Opt. 4, 39-54 (1995). [CrossRef]
  30. E. Wolf, "Determination of the amplitude and the phase of the scattered field by holography," J. Opt. Soc. Am. 60, 18-20 (1970). [CrossRef]
  31. W. Singer, B. Dobler, H. Schreiber, K. Brenner, B. Messerschmidt, "Refractive-index measurement of gradient-index microlenses by diffraction tomography," Appl. Opt. 35, 2167-2171 (1996). [CrossRef] [PubMed]
  32. InPhase Technologies, Tapestry Media, www.inphase-technologies.com.
  33. C. J. Cogswell, N. I. Smith, K. G. Larkin, P. Hariharan, "Quantitative DIC microscopy using a geometric phase shifter," Proc. SPIE 2984, 72-81 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited