OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14266–14274

Spectral dependence of single molecule fluorescence enhancement

Palash Bharadwaj and Lukas Novotny  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 14266-14274 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fluorescence from a single molecule can be strongly enhanced near a metal nanoparticle acting as an optical antenna. We demonstrate the spectral tunability of this antenna effect and show that maximum enhancement is achieved when the emission frequency is red-shifted from the surface plasmon resonance of the particle. Our experimental results, using individual gold and silver particles excited at different laser-frequencies, are in good agreement with an analytical theory which predicts a different spectral dependence of the radiative and non-radiative decay rates.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2160) Physical optics : Energy transfer
(260.2510) Physical optics : Fluorescence
(160.4236) Materials : Nanomaterials

ToC Category:
Physical Optics

Original Manuscript: September 5, 2007
Revised Manuscript: October 9, 2007
Manuscript Accepted: October 9, 2007
Published: October 12, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Palash Bharadwaj and Lukas Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  2. S. K¨uhn, S. U. H°akanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  3. J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  4. Fu Min Huang, and D. Richards, "Fluorescence enhancement and energy transfer in apertureless scanning near- field optical microscopy," J. Opt. A : Pure Appl. Opt. 8, S234-S238 (2006). [CrossRef]
  5. D. W. Pohl, "Near-field optics seen as an antenna problem," in Near-field Optics, Principles and Applications, X. Zhu, and M. Ohtsu, eds. (World Scientific, Singapore, 2000), pp 9-21.
  6. P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005). [CrossRef]
  7. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  8. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  9. T. Kalkbrenner, U. H°akanson, A. Sch¨adle, S. Burger, C. Henkel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005). [CrossRef] [PubMed]
  10. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  11. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics (Springer Series in Optical Sciences, New York, 2006).
  12. Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808 (2000). [CrossRef]
  13. G. W. Ford, and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984). [CrossRef]
  14. H. Metiu, "Surface Enhanced Spectroscopy," Prog. Surf. Sci. 17, 153-320 (1984). [CrossRef]
  15. V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Spontaneous emission in the presence of nanobodies," Quantum Electron. 31, 569-586 (2001). [CrossRef]
  16. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006). [CrossRef]
  17. Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Letters 7, 690-696 (2007). [CrossRef] [PubMed]
  18. R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A. 15, 706-712 (1998). [CrossRef]
  19. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002). [CrossRef] [PubMed]
  20. J. Azoulay, A. Debarre, A. Richard, and P. Tchenio, "Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips," Europhys. Lett. 51, 374-380 (2000). [CrossRef]
  21. V. Giannini, J. A. S’anchez-Gil, J. V. Garc’ýa-Ramos, and E. R. M’endez, "Electromagnetic model and calculations of the surface-enhanced Raman-shifted emission from Langmuir-Blodgett films on metal nanostructures," J. Chem. Phys. 127, 044702 (2007). [CrossRef] [PubMed]
  22. P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  23. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001). [CrossRef] [PubMed]
  24. M. A. Lieb, J. Zavislan, and L. Novotny, "Single-molecule orientations determined by direct emission pattern imaging," J. Opt. Soc. Am. B 21, 1210-1215 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited