OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14299–14305

Refractive index dependence of L3 photonic crystal nano-cavities

A. M. Adawi, A. R. A. Chalcraft, D. M. Whittaker, and D. G. Lidzey  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14299-14305 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We model the optical properties of L3 photonic crystal nano-cavities as a function of the photonic crystal membrane refractive index n using a guided mode expansion method. Band structure calculations revealed that a TE-like full band-gap exists for materials of refractive index as low as 1.6. The Q-factor of such cavities showed a super-linear increase with refractive index. By adjusting the relative position of the cavity side holes, the Q-factor was optimised as a function of the photonic crystal membrane refractive index n over the range 1.6 to 3.4. Q-factors in the range 3000-8000 were predicted from absorption free materials in the visible range with refractive index between 2.45 and 2.8.

© 2007 Optical Society of America

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: September 4, 2007
Revised Manuscript: October 4, 2007
Manuscript Accepted: October 4, 2007
Published: October 15, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

A. M. Adawi, A. R. Chalcraft, D. M. Whittaker, and D. G. Lidzey, "Refractive index dependence of L3 photonic crystal nano-cavities," Opt. Express 15, 14299-14305 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade and J. N. Win, Photonic crystals (Princeton University press, 1995)
  2. K. Sakada, Optical Properties of Photonic Crystals, Second edition (Springer, 2004)
  3. Y. Akahane, T. Asano, B. S. Song, S. Noda, ‘‘High-Q photonic nanocavity in two-dimensional photonic crystal,’’Nature 425, 944 (2003). [CrossRef] [PubMed]
  4. K. J. Vahala, ‘‘Optical microcavities,’’Nature 424, 839 (2003). [CrossRef] [PubMed]
  5. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, ‘‘Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,’’Nature 432, 200 (2004). [CrossRef] [PubMed]
  6. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers,’’Phys. Rev. Lett. 96, 127104 (2006). [CrossRef]
  7. W-H. Chang, W-Y. Chen, H-S. Chang, T-P. Hsieh, J-I. Chyi, and T-M. Hsu, ‘‘Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,’’Phys. Rev. Lett. 96, 117401 (2006). [CrossRef] [PubMed]
  8. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, ‘‘Optical bistable switching action of Si high-Q photonic-crystal nanocavities,’’Opt. Express 13, 2678 (2005). [CrossRef] [PubMed]
  9. E. M. Purcell, ‘‘Spontaneous emission probabilities at radio frequencies,’’Phys. Rev. 69,681 (1946).
  10. D. Englund, I. Fushman and J. Vuckovic, ‘‘General recipe for designing photonic crystal cavities,’’Opt. Express 13, 5961 (2005). [CrossRef] [PubMed]
  11. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, S. Noda, ‘‘Control of Light Emission by 3D Photonic Crystals,’’Science 305, 227 (2004). [CrossRef] [PubMed]
  12. T. F. Krauss, R. M. De La Rue, S. Brand, ‘‘Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,’’Nature 383, 699 (1996). [CrossRef]
  13. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 83, 1512 (2003), and S. Noda, A. Chutinan, M. Imada, ‘‘Trapping and emission of photons by a single defect in a photonic bandgap structure,’’Nature 407, 608 (2000), [CrossRef]
  14. H-Y. Ryu, M. Notomi, Y-H. Lee, ‘‘High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,’’Appl. Phys. Lett. 83, 4294 (2003). [CrossRef]
  15. Y. Akahane, T. Asano, B-S. Song, and S. Noda, ‘‘Fine-tuned high-Q photonic-crystal nanocavity,’’Opt. Express 13, 1202 (2005). [CrossRef] [PubMed]
  16. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, ‘‘Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,’’Appl. Phys. Lett. 82, 1341 (2003). [CrossRef]
  17. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001). [CrossRef]
  18. Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies and A. Rode, ‘‘Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,’’Appl. Phys. Lett. 90, 071102 (2007). [CrossRef]
  19. M. Kitamura, S. Iwamoto, and Y. Arakawa, ‘‘Enhanced light emission from an organic photonic crystal with a nanocavity,’’Appl. Phys. Lett. 87, 151119 (2005). [CrossRef]
  20. Z. Zhang, T. Yoshie, X. Zhu, J. Xu, and A. Scherer, ‘‘Visible two-dimensional photonic crystal slab laser,’’Appl. Phys. Lett. 89, 071102 (2006). [CrossRef]
  21. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, ‘‘Silicon-based photonic crystal nanocavity light emitters,’’Appl. Phys. Lett. 89, 221101(2006). [CrossRef]
  22. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, ‘‘Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,’’Appl. Phys. Lett. 91, 021110 (2007). [CrossRef]
  23. G. Böttger, M. Schmidt, M. Eich, R. Boucher and U. Hubner, "Photonic crystal all-polymer slab resonators," J. Appl. Phys. 98, 103101 (2005). [CrossRef]
  24. D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, ‘‘Photonic band structure of patterned waveguides with dielectric and metallic cladding,’’Phys. Rev. B 65, 073102 (2002). [CrossRef]
  25. L. C. Andreani and D. Gerace, ‘‘Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,’’Phys. Rev. B 73, 235114 (2006). [CrossRef]
  26. The 3D FDTD code (CrystalWave) used in this work is a product of Photon design Ltd, http://www.photond.com
  27. J. Vuckovic, Y. Xu, A. Yariv, A. Scherer, ‘‘Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,’’IEEE J. Quantum Electron. 35, 1168 (1999). [CrossRef]
  28. A. M. Adawi, A. Cadby, L. G. Connolly, W-C. Hung, R. Dean, A. Tahraoui, A. M. Fox, A. G. Cullis, D. Sanvitto, M. S. Skolnick, and D. G. Lidzey ‘‘Spontaneous emission control in micropillar cavities containing a fluorescent molecular dye,’’Adv. Mater. 18, 742 (2006). [CrossRef]
  29. D. C. Cronemeyer, "Electrical and optical properties of rutile single crystals,’’Phys. Rev. 87, 876 (1952). [CrossRef]
  30. C-S. Kee, S-P. Han, K. B. Yoon, C-G. Choi, H. K. Sung, S. S. Oh, H. Y. Park, S. Park and H. Schift, ‘‘Photonic band gaps and defect modes of polymer photonic crystal slabs,’’Appl. Phys. Lett. 86, 051101 (2005). [CrossRef]
  31. M. Gilo, N. Croitoru, ‘‘Properties of TiO2 films prepared by ion-assisted deposition using a gridless end-Hall ion source,’’Thin Solid Films 283, 84 (1996). [CrossRef]
  32. S. Tomljenovic-Hanic, M. J. Steel, C. Martijin de Sterke and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited