OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14313–14321

A fast Gabor wavelet transform for high-precision phase retrieval in spectral interferometry

J. Bethge, C. Grebing, and G. Steinmeyer  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14313-14321 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fast implementation of the Gabor wavelet transform for phase retrieval in spectral interferometry is discussed. This algorithm is experimentally demonstrated for the characterization of a supercontinuum, using spectral phase interferometry for direct electric-field reconstruction (SPIDER). The performance of wavelet based ridge tracking for frequency demodulation is evaluated and compared to traditional Fourier filtering techniques. It is found that the wavelet based strategy is significantly less susceptible toward experimental noise and does not exhibit cycle slip artifacts. Optimum performance of the Gabor transform is observed for a Heisenberg box with unity aspect ratio. As a result, the phase jitter of 60 individual measurements is reduced by about a factor 2 compared to Fourier filtering, and the detection window increases by 20%. With an optimized implementation, retrieval rates of several 10 Hz can be reached, which makes the fast Gabor transform a superior one-to-one replacement even in applications that require video-rate update, such as a real-time SPIDER apparatus.

© 2007 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(100.7410) Image processing : Wavelets
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Image Processing

Original Manuscript: July 26, 2007
Revised Manuscript: September 27, 2007
Manuscript Accepted: October 2, 2007
Published: October 15, 2007

J. Bethge, C. Grebing, and G. Steinmeyer, "A fast Gabor wavelet transform for high-precision phase retrieval in spectral interferometry," Opt. Express 15, 14313-14321 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. Trebino, "Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses," (Kluwer Academic Publishers, Boston, MA, 2000).
  2. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998). [CrossRef]
  3. I. A. Walmsley, "Characterization of Ultrashort Optical Pulses in the Few-Cycle Regime Using Spectral Phase Interferometry for Direct Electric-Field Reconstruction," Top. Appl. Phys. 95, 265-292 (2004). [CrossRef]
  4. T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. Walmsley, "Real-time SPIDER: ultrashort pulse characterization at 20 Hz," Opt. Express 5, 134-143 (1999). [CrossRef] [PubMed]
  5. W. Kornelis, J. Biegert, J. W. G. Tisch, M. Nisoli, G. Sansone, C. Vozzi, S. De Silvestri, and U. Keller, "Singleshot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 28, 281-283 (2003). [CrossRef] [PubMed]
  6. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  7. Y. Deng, Z. Wu and C. Wang, "Wavelet-transform analysis of spectral shearing interferometry for phase reconstruction of femtosecond optical pulses," Opt. Express 13, 2120-2126 (2005). [CrossRef] [PubMed]
  8. Y. Deng, C. Wang, L. Chai, and Z. Zhang, "Determination of Gabor wavelet shaping factor for accurate phase retrieval with wavelet-transform," Appl. Phys. B 81, 1107-1111 (2005). [CrossRef]
  9. G. Beylkin, R. Coifman, and V. Rokhlin, "Fast Wavelet Transform and Numerical Algorithms 1," Commun. Pure Appl. Math. 44, 141-183 (1991). [CrossRef]
  10. S. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell. 11, 674-693 (1989). [CrossRef]
  11. S. Mallat, "A wavelet tour of signal processing," 2nd Edition, Academic Press, San Diego, CA, 2004.
  12. D. Gabor, "Theory of Communication," J. IEE 93, 429-457 (1946).
  13. G. Stibenz and G. Steinmeyer, "Optimizing spectral phase interferometry for direct electric-field reconstruction," Rev. Sci. Instrum 77, 073105 1-9 (2006). [CrossRef]
  14. M. Nisoli, S. De Silvestri, O. Svelto, R. Szip cs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett. 22, 522-524 (1997). [CrossRef] [PubMed]
  15. G. Steinmeyer and G. Stibenz, "Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirros," Appl. Phys. B 82, 175-181 (2006). [CrossRef]
  16. G. Stibenz and G. Steinmeyer, "High dynamic range characterization of ultrabroadband white-light continuum pulses," Opt. Express 12, 6319-6325 (2004). [CrossRef] [PubMed]
  17. C. Dorrer and I. A. Walmsley, "Accuracy criterion for ultrashort pulse characterization techniques: application to spectral phase interferometry for direct electric field reconstruction," J. Opt. Soc. Am. B 19, 1019-1029 (2002). [CrossRef]
  18. M.E. Anderson, L.E.E. de Araujo, E.M. Kosik and I.A. Walmsley, "The effects of noise on ultrashort-optical pulse measurement using SPIDER," Appl. Phys. B 70, S85-S93 (2000). [CrossRef]
  19. T. Hansel, C. von Kopylow, J. Müller, C. Falldorf, W. Jüptner, R. Grunwald, G. Steinmeyer, and U. Griebner, "Ultrashort pulse dual-wavelength source for digital holographic two-wavelength contouring," submitted to Appl. Phys. B (2007). [CrossRef]
  20. S. Özender, Ö. Kocahan, E. Coskun and H. Göktas, "Optical phase distribution evaluation by using an Stransform," Opt. Lett. 32, 591-593 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited