OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14322–14334

Optofluidic trapping and transport on solid core waveguides within a microfluidic device

Bradley S. Schmidt, Allen H. J. Yang, David Erickson, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14322-14334 (2007)
http://dx.doi.org/10.1364/OE.15.014322


View Full Text Article

Enhanced HTML    Acrobat PDF (1299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we demonstrate an integrated microfluidic/photonic architecture for performing dynamic optofluidic trapping and transport of particles in the evanescent field of solid core waveguides. Our architecture consists of SU-8 polymer waveguides combined with soft lithography defined poly(dimethylsiloxane) (PDMS) microfluidic channels. The forces exerted by the evanescent field result in both the attraction of particles to the waveguide surface and propulsion in the direction of optical propagation both perpendicular and opposite to the direction of pressure-driven flow. Velocities as high as 28 μm/s were achieved for 3 μm diameter polystyrene spheres with an estimated 53.5 mW of guided optical power at the trapping location. The particle-size dependence of the optical forces in such devices is also characterized.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.7010) Lasers and laser optics : Laser trapping
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: August 6, 2007
Revised Manuscript: September 25, 2007
Manuscript Accepted: September 27, 2007
Published: October 15, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Bradley S. Schmidt, Allen H. Yang, David Erickson, and Michal Lipson, "Optofluidic trapping and transport on solid core waveguides within a microfluidic device," Opt. Express 15, 14322-14334 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14322


Sort:  Year  |  Journal  |  Reset  

References

  1. H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering flows in small devices: microfluidics toward a lab-on-a-chip," Annu. Rev. Fluid Mech. 36, 381-411 (2004). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  4. K. C. Neuman and Steven Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  5. P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett. 29, 2270-2272 (2004). [CrossRef] [PubMed]
  6. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  7. R. Applegate, Jr., J. Squier, T. Vestad, J. Oakey, and D. Marr, "Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars," Opt. Express 12, 4390-4398 (2004). [CrossRef] [PubMed]
  8. F. Merenda, J. Rohner, J. -M. Fournier, and R.-P. Salathé, "Miniaturized high-NA focusing-mirror multiple optical tweezers," Opt. Express 15, 6075-6086 (2007). [CrossRef] [PubMed]
  9. F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001). [CrossRef] [PubMed]
  10. F. V. Ignatovich and L. Novotny, "Experimental study of nanoparticle detection by optical gradient forces," Rev. Sci. Instrum. 74, 5231-5235 (2003). [CrossRef]
  11. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, "Optical manipulation of objects and biological cells in microfluidic devices," Biomed. Microdevices 5, 61-67 (2003). [CrossRef]
  12. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004). [CrossRef] [PubMed]
  13. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, "Optical trapping of single-walled carbon nanotubes," Nano Lett. 4, 1415-1419 (2004). [CrossRef]
  14. S. Cran-McGreehin, T. F. Krauss and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006). [CrossRef] [PubMed]
  15. E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 12, 2429-2438 (1995). [CrossRef]
  16. M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999). [CrossRef]
  17. H. Y. Jaising and O. G. Hellesø, "Radiation forces on a Mie particle in the evanescent field of an optical waveguide," Opt. Commun. 246, 373-383 (2005). [CrossRef]
  18. A. Rahmani and P. C. Chaumet, "Optical trapping near a photonic crystal," Opt. Express 14, 6353-6358 (2006). [CrossRef] [PubMed]
  19. S. Mandal and D. Erickson, "Optofluidic transport in liquid core waveguiding structures," Appl. Phys. Lett. 90, 184103 (2007). [CrossRef]
  20. S.  Kawata and T.  Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett.  21, 1768-1770 (1996). [CrossRef] [PubMed]
  21. T. Tanaka and S. Yamamoto, "Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131-3133 (2000). [CrossRef]
  22. K.  Grujic, O. G.  Hellesø, J. P.  Hole, and J. S.  Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express  13, 1-7 (2005). [CrossRef] [PubMed]
  23. K. Grujic and O. G. Hellesø, "Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide," Opt. Express 15, 6470-6477 (2007). [CrossRef] [PubMed]
  24. S. Gaugiran, S. Gétin, G. Colas, A. Fuchs, F. Chatelain, J. Dérouard, and J.M. Fedeli, "Optical manipulation of microparticles and cells on silicon nitride waveguides," Opt. Express 13, 6956-6963 (2005). [CrossRef] [PubMed]
  25. D. Psaltis, S.R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  26. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photonics 1, 106-114 (2007). [CrossRef]
  27. B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 230, 91-94 (2004). [CrossRef]
  28. B. Y. Shew, C. H. Huo, Y. C. Huang, Y. H. Tsai, "UV-LIGA interferometer biosensor based on the SU-8 optical waveguide," Sens. Actuators A 120, 383-389 (2005). [CrossRef]
  29. D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, "SU-8 micro-biosensor based on Mach-Zender interferometer," Rev. Adv. Mater. Sci. 10, 295-299 (2005).
  30. MicroChem, http://www.microchem.com
  31. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998). [CrossRef] [PubMed]
  32. Duke Scientific Corporation, http://www.dukescientfic.com
  33. A. H. J. Yang and D. Erickson "Stability analysis of optofluidic transport on solid-core waveguiding structures" Submitted (2007).
  34. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Forces on a Rayleigh particle in the cover region of a planarwaveguide," Lightwave Tech. Lett. 18, 388-400 (2000). [CrossRef]
  35. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media (Noordhoff International, 1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (117 KB)      QuickTime
» Media 2: MOV (157 KB)      QuickTime
» Media 3: MOV (29 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited