OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14335–14347

Theoretical analysis of supercontinuum generation in a highly birefringent D-shaped microstructured optical fiber

Emiliano R. Martins, Danilo H. Spadoti, Murilo A. Romero, and Ben-Hur V. Borges  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14335-14347 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper carries out a rigorous analysis of supercontinuum generation in an improved highly asymmetric microstructured fiber (MF) design. This geometry, defined simply as D-MF, has the advantage of being produced with a regular stacking and drawing technology. We have obtained birefringence values on the order of 4.87×10-3 at the adopted pump wavelength and a significantly smaller effective area when compared to a whole MF, which makes this fiber quite attractive for SCG. Therefore, this D-MF design is a promising alternative for SCG since it provides new degrees of freedom to control field confinement, birefringence, and dispersion characteristics of MFs.

© 2007 Optical Society of America

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.3990) Optical devices : Micro-optical devices
(260.1440) Physical optics : Birefringence
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 9, 2007
Revised Manuscript: October 1, 2007
Manuscript Accepted: October 6, 2007
Published: October 15, 2007

Emiliano R. Martins, Danilo H. Spadoti, Murilo A. Romero, and Ben-Hur V. Borges, "Theoretical analysis of supercontinuum generation in a highly birefringent D-shaped microstructured optical fiber," Opt. Express 15, 14335-14347 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  3. D. Mogilevtsev, T. A. Birks, and P. St. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998). [CrossRef]
  4. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal Fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000). [CrossRef]
  5. J. M.  Dudley, G.  Genty, and S.  Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys.  78, 1135-1184 (2006). [CrossRef]
  6. A. V. Husakou and J. Herrmann "Supercontinuum generation of higher-order solitons by fission in photonic crystal Fibers," Phys. Rev. Lett. 87, 203-901 (2001). [CrossRef]
  7. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002). [CrossRef]
  8. G. Genty, M. Lehtonen, and H. Ludvigsen, J. Broeng, M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1096 (2002). [PubMed]
  9. G. Genty, M. Lehtonen, and H. Ludvigsen, M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004). [CrossRef] [PubMed]
  10. N. Akhemediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef]
  11. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004). [CrossRef] [PubMed]
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  13. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006). [CrossRef] [PubMed]
  14. F. Lu, Q. Lin, W. H. Knox and G. P. Agrawal, "Vector soliton fission," Phys. Rev. Lett. 93, 183901 (2004). [CrossRef] [PubMed]
  15. F. Luan, A. Yulin, J. C. Knight, and D. V. Skryabin, "Polarization instability of solitons in photonic crystal fibers," Opt. Express 14, 6550-6556 (2006). [CrossRef] [PubMed]
  16. Z. Zhu and T. G. Brown, "Polarization properties in supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B 21, 249-257 (2004). [CrossRef]
  17. F. Biancalana and D. V. Skryabin, "Vector modulational instabilities in ultra-small core optical fibres," J. Opt. A 6, 301-306 (2004). [CrossRef]
  18. J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Cross-phase modulation instability in photonic crystal fibers," Opt. Lett. 31, 873-875 (2006). [CrossRef] [PubMed]
  19. R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Polarization modulation instability in photonic crystal fibers," Opt. Lett. 31, 1379-1381 (2006). [CrossRef] [PubMed]
  20. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000). [CrossRef]
  21. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001). [CrossRef]
  22. M. J. Steel and R. M. Osgood, Jr., "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001). [CrossRef]
  23. J. Ju, W. Jin, and M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 15, 1375-1377 (2003). [CrossRef]
  24. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola "Supercontinuum generation in a highly birefringent microstructured fiber," Appl. Phys. Lett. 82, 2197-2199 (2003). [CrossRef]
  25. A. Proulx, J. Ménard, N. Hô, J. M. Laniel, R. Vallée, and C. Paré, "Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers," Opt. Express 11, 3338-3345 (2003). [CrossRef] [PubMed]
  26. N.-K. Chen and S. Chi, "Evanescent wave photonic crystal fiber tunable filter using dispersive optical polymers," Optical Fiber Communication Conference. Technical Digest. OFC/NFOEC 3, 3pp. (2005). [CrossRef]
  27. N.-K. Chen and S. Chi "Influence of a holey cladding structure on spectral characteristics of side-polished endlessly single-mode photonic crystal fibers," Opt. Lett. 31, 2251-2253 (2006). [CrossRef] [PubMed]
  28. H. Kim, J. Kim, U.-C. Paek, B. H. Lee, and K. T. Kim "Tunable photonic crystal fiber coupler based on a side-polishing technique," Opt. Lett. 29, 1194-1196 (2004). [CrossRef] [PubMed]
  29. J. Lægsgaard and A. Bjarklev, "Microstructured optical fibers-fundamentals and applications," J. Am. Ceram. Soc. 89, 2-12 (2006). [CrossRef]
  30. J. Fini and R. Bise. "Progress in fabrication and modeling of microstructured optical fiber," Jap. J. App. Phys. 43, 5717-5730 (2004). [CrossRef]
  31. K. Digweed-Lyytikainen, C. A. de Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero, "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microw. Opt. Technol. Lett. 49, 872-874, (2007). [CrossRef]
  32. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001)
  33. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  34. S. Trillo and S. Wabnitz, "Parametric and Raman amplification in birefringent fibers," J. Opt. Soc. Am. B 9, 1061-1082 (1992). [CrossRef]
  35. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005) [CrossRef]
  36. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989). [CrossRef]
  37. C. R. Menyuk, M. N. Islam and J. P. Gordon, "Raman effect in birefringent optical fibers," Opt. Lett. 16, 566-568 (1991). [CrossRef] [PubMed]
  38. D. H. Spadoti, C. A. de Francisco, V. E. Nascimento, B.-H. V. Borges, and M. A. Romero, "Full-vectorial to scalar FD-SOR formulations for optical waveguide modeling: A comparative study," Int. J. Numer. Model. 19, 507-520 (2006). [CrossRef]
  39. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  40. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004). [CrossRef] [PubMed]
  41. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13,6181-6192 (2005). [CrossRef] [PubMed]
  42. A. V. Mitrofanov, Y. M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov and A. M. Zheltikov, "Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: A promising fiber light source for nonlinear Raman microspectroscopy," Opt. Express 14, 10645-10651 (2006). [CrossRef] [PubMed]
  43. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]
  44. C.-M.  Chen and P. L.  Kelley, "Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis," J. Opt. Soc. Am. B  19, 1961-1967 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited