OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14355–14362

Demonstration of a Mid-infrared silicon Raman amplifier

Varun Raghunathan, David Borlaug, Robert R. Rice, and Bahram Jalali  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14355-14362 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (148 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate, for the first time, a mid infrared silicon Raman amplifier. Amplification of 12 dB is reported for a signal at 3.39 micron wavelength. The active medium was a 2.5 cm long silicon sample that was pumped with 5ns pulses at 2.88 micron. Such a technology can potentially extend silicon photonics’ application beyond data communication in the near IR and into the mid-IR world of remote sensing, biochemical detection and laser medicine. Challenges faced in the mid-IR regime such as a higher free carrier scattering rate and longer lifetimes in mid-IR waveguides are also discussed.

© 2007 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(140.3550) Lasers and laser optics : Lasers, Raman
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

Original Manuscript: August 9, 2007
Revised Manuscript: September 24, 2007
Manuscript Accepted: September 26, 2007
Published: October 16, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Varun Raghunathan, David Borlaug, Robert R. Rice, and Bahram Jalali, "Demonstration of a Mid-infrared silicon Raman amplifier," Opt. Express 15, 14355-14362 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  2. H.  Rong, R. Jones, A.  Liu, O.  Cohen, D. Hak, A.  Fang and M.  Pannicia, "A continuous-wave Raman silicon laser," Nature 433, 725 - 728 (2005). [CrossRef] [PubMed]
  3. V. Raghunathan, O. Boyraz and B. Jalali, "20 dB on-off Raman amplification in silicon waveguides," CLEO 2005, Baltimore, MD, May 2005, CMU1.
  4. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12,4261-4268, (2004). [CrossRef] [PubMed]
  5. D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005). [CrossRef]
  6. R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A 8, 840-848 (2006). [CrossRef]
  7. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, "Prospects for silicon mid-IR Raman lasers," IEEE J. Sel. Top. Quantum Electron. 12, 1618-1627 (2006). [CrossRef]
  8. V. Raghunathan, R. Shori, O. M. Stafsudd, and B. Jalali, "Nonlinear absorption in silicon and the prospects of mid-infrared Silicon Raman laser," Phys. Status Solidi. (A) 203, R38-R40 (2006). [CrossRef]
  9. I. T. Sorokina and K. L. Vodpyanov, Solid state mid infrared laser sources, (Springer Topics in Applied Physics, 2003). [CrossRef]
  10. A. Kier, ed., Mid infrared semiconductor optoelectronics, (Springer series in Optoelectronics, 2006). [CrossRef]
  11. L. Meyers and W. Bosenberg, "Periodically-poled lithium niobate and quasi-phase matched optical parametric oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997). [CrossRef]
  12. A. Zajac, M. Skorczakowski, Jacek Swiderski, and P. Nyga, "Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications," Opt. Express 12, 5125-5130 (2004). [CrossRef] [PubMed]
  13. T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov "Stimulated Raman Scattering in Mid IR spectral range 2.31-2.75-3.7μm in BaWO4 crystal under 1.9 and 1.56μm pumping," Laser Phys. Lett. 3,17-20 (2005). [CrossRef]
  14. H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 3-56, (2003). [CrossRef]
  15. V. Raghunathan, H. Renner, R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 13, 3396-3408 (2007). [CrossRef]
  16. A. Yariv, Quantum Electronics, 3rd ed., (John Wiley and Sons, New York, 1988).
  17. D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of Raman effect in silicon-on-insulator waveguides," Opt. Lett. 28, 1954-1956 (2003). [CrossRef] [PubMed]
  18. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman scattering in Silicon waveguides," Opt. Express 11, 1731-1739 (2003). [CrossRef] [PubMed]
  19. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004). [CrossRef]
  20. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004). [CrossRef] [PubMed]
  21. A. E. Siegman, "How to (may be) measure laser beam quality," Tutorial OSA Annual Meeting (1997).
  22. N. Bloembergen, "Laser induced Electric breakdown in solids," IEEE J. Quantum Electron. 10, 375-386 (1974). [CrossRef]
  23. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited