OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14396–14403

Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles

Luca Dal Negro and Ning-Ning Feng  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14396-14403 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we study the spectral, localization and dispersion properties of dipolar modes in quasi-periodically modulated nanoparticle chains based on the Fibonacci sequence. By developing a transfer matrix approach for the calculation of resonant frequencies, oscillation eigenvectors and integrated density of states (IDS) of spatially-modulated dipole chains, we demonstrate the presence of large spectral gaps and calculate the pseudo-dispersion diagram of Fibonacci plasmonic chains. The presence of plasmonic band-gaps and localized states in metal nanoparticle chains based on quasi-periodic order can have a large impact in the design and fabrication of novel nanophotonics devices.

© 2007 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: July 17, 2007
Revised Manuscript: September 26, 2007
Manuscript Accepted: October 1, 2007
Published: October 17, 2007

Luca Dal Negro and Ning-Ning Feng, "Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles," Opt. Express 15, 14396-14403 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Kohmoto, B. Sutherland, and C. Tang, "Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model," Phys. Rev. B 35, 1020-1033 (1987). [CrossRef]
  2. D. Levine and P. J. Steinhardt, "Quasicrystals: definition and structure," Phys. Rev. B 34, 596-616 (1986). [CrossRef]
  3. C. Janot, Quasicrystals: A Primer (Oxford University Press, NY, 1997).
  4. T. Fujiwara and T. Ogawa, Quasicrystals (Springer-Verlag, Berlin, 1990). [CrossRef]
  5. R. B. Capaz, B. Koiller, and S. L. A. de Queiroz, "Gap states and localization properties of one-dimensional Fibonacci quasicrystals," Phys. Rev. B 42, 6402-6406 (1990). [CrossRef]
  6. M. Kohmoto, B. Sutherland, and K. Iguchi, "Localization in Optics: Quasiperiodic media," Phys. Rev. Lett.,  58, 2436-2438 (1987). [CrossRef] [PubMed]
  7. C. Benoit, G. Poussigue, and A. Azougarh, "Neutron scattering by phonons in quasi-crystals," J. Phys.: Condens. Matter 2, 2519-2536 (1990). [CrossRef]
  8. E. L. Albuquerque and M. G. Cottam, "Theory of elementary excitations in quasiperiodic structures," Phys. Rep. 376, 225-337 (2003). [CrossRef]
  9. A. Rudinger and F. Piechon, "On the multifractal spectrum of the Fibonacci chain," J. Phys. A.: Math. Gen. 31, 155-164 (1998).Q1 [CrossRef]
  10. T. Fujiwara, M. Kohmoto, and T. Tokihiro, "Multifractal wavefunctions on a Fibonacci lattice," Phys. Rev. B 40, 7413-7416 (1989). [CrossRef]
  11. F. Igloi, L. Turban, and H. Rieger, "Anomalous diffusion in aperiodic environments," Phys. Rev. E. 59, 1465-1474 (1999). [CrossRef]
  12. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, "Localization of light waves in Fibonacci dielectric multilayers," Phys. Rev. Lett. 72, 633-636 (1994). [CrossRef] [PubMed]
  13. T. Hattori, N. Tsurumachi, S. Kawato, and H. Nakatsuka, "Photonic dispersion relation in a one-dimensional quasicrystal," Phys. Rev. B 50, 4220-4223 (1994). [CrossRef]
  14. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, L. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003). [CrossRef] [PubMed]
  15. R. Zia, J. A. Schuller and M. L. Brongersma, "Plasmonics: The Next Chip-Scale Technology," Materials Today 9, 20-27 (2006). [CrossRef]
  16. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501 (2001). [CrossRef]
  17. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  18. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  19. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B. 62, 356-359 (2000). [CrossRef]
  20. S. Y. Park and D. Stroud, "Surface-plasmon relations in chains of metallic nanoparticles: an exact quasistatic calculation," Phys. Rev. B. 69, 125418 (2004). [CrossRef]
  21. C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express,  12, 6141 (2004). [CrossRef] [PubMed]
  22. F. A. B. F. de Moura, L. P. Viana, A. C. Frery, "Vibrational modes in aperiodic one-dimensional harmonic chains," Phys. Rev. B. 73, 212302 (2006). [CrossRef]
  23. P. K. Datta and K. Kundu, "The absence of localization in one-dimensional disordered harmonic chains," J. Phys: Condens. Matter 6, 4465-4478 (1994). [CrossRef]
  24. M. Schroeder, Fractals, Chaos, Power Laws (Freeman, NY, 1991).
  25. R. C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, 2000).
  26. U. Frisch, Turbolence (Cambridge University Press, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited