OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14431–14453

Efficient and spurious-free integral-equation-based optical waveguide mode solver

Amit Hochman and Yehuda Leviatan  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14431-14453 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (405 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modal analysis of waveguides and resonators by integral-equation formulations can be hindered by the existence of spurious solutions. In this paper, spurious solutions are shown to be eliminated by introduction of a Rayleigh-quotient based matrix singularity measure. Once the spurious solutions are eliminated, the true modes may be determined efficiently and reliably, even in the presence of degeneracy, by an adaptive search algorithm. Analysis examples that demonstrate the efficacy of the method include an elliptical dielectric waveguide, two unequal touching dielectric cylinders, a plasmonic waveguide, and a realistic micro-structured optical fiber. A freely downloadable version of an optical waveguide mode solver based on this article is available.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 25, 2007
Revised Manuscript: August 26, 2007
Manuscript Accepted: August 26, 2007
Published: October 18, 2007

Amit Hochman and Yehuda Leviatan, "Efficient and spurious-free integral-equation-based optical waveguide mode solver," Opt. Express 15, 14431-14453 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. K. Hayata, M. Koshiba, M. Eguchi, and M. Suzuki, "Vectorial Finite-Element Method without any spurious solutions for DielectricWaveguiding problems using transverse magnetic-field component," IEEE Trans. Microwave Theory Tech. 34, 1120-1124 (1986). [CrossRef]
  2. B. Rahman, F. Fernandez, and J. Davies, "Review of finite element methods for microwave and optical waveguides," Proc. IEEE 79, 1442-1448 (1991). [CrossRef]
  3. J. T. Chen, T. W. Lin, K. H. Chen, and S. W. Chyuan, "True and spurious eigen solutions for the problems with the mixed-type boundary conditions using BEMs," Finite Elem. Anal. Des. 40, 1521-1549 (2004). [CrossRef]
  4. C. Vassallo, "1993-1995 optical mode solvers," Opt. Quantum Electron. 29, 95-114 (1997). [CrossRef]
  5. Y. Leviatan, A. Boag, and A. Boag, "Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution," IEEE Trans. Antennas Propag. 36, 1722-1734 (1988). [CrossRef]
  6. A. Hochman and Y. Leviatan, "Analysis of strictly bound modes in photonic crystal fibers by use of a sourcemodel technique," J. Opt. Soc. Am. A 21, 1073-1081 (2004). [CrossRef]
  7. W. Schroeder and I. Wolff, "The origin of spurious modes in numerical solutions of electromagnetic field eigenvalue problems," IEEE Trans. Microwave Theory Tech. 42, 644-653 (1994). [CrossRef]
  8. W. Schroeder and I. Wolff, "Full-wave analysis of the influence of conductor shape and structure details on losses in coplanar waveguide," IEEE MTT S Int.Microwave Symp. Dig. 3, 1273-1276 (1995).
  9. O. Bucci, G. D’Elia, and M. Santojanni, "Non-redundant implementation of method of auxiliary sources for smooth 2D geometries," Electron. Lett. 41, 22 (2005). [CrossRef]
  10. B. E. Spielman and R. F. Harrington, "Waveguides of Arbitrary Cross Section by Solution of a Nonlinear Integral Eigenvalue Equation," IEEE Trans. Microwave Theory Tech. 20, 578-585 (1972). [CrossRef]
  11. V. Labay and J. Bornemann, "Matrix singular value decomposition for pole-free solutions of homogeneous matrix equations as applied to numerical modeling methods," IEEE Microwave Guid. Wave Lett. 2, 49-51 (1992). [CrossRef]
  12. W. Schroeder and I. Wolff, "A reliable and efficient numerical method for indirect eigenvalue problems arising in waveguide and resonator analysis," Int. J. Numer. Model. 12, 197-208 (1999). [CrossRef]
  13. N. Don, S. Germani,M. Bozzi, A. Kirilenko, and L. Perregrini, "Determination of the mode spectrum of arbitrarily shaped waveguides using the eigenvalue-tracking method," Microwave Opt. Technol. Lett. 48, 553 (2006). [CrossRef]
  14. The Source-Model Technique Package (SMTP) may be downloaded at: http://www.ee.technion.ac.il/leviatan/smtp/index.htm.
  15. Z. Altman, H. Cory, and Y. Leviatan, "Cutoff frequencies of dielectric waveguides using the multifilament current model," Microwave Opt. Technol. Lett. 3, 294-295 (1990). [CrossRef]
  16. M. Golberg, Solution Methods for Integral Equations: Theory and Applications (Plenum Press, 1979).
  17. C. Müller, Foundations of the Mathematical Theory of Electromagnetic (Springer-Verlag, 1969).
  18. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Highly efficient full-vectorial integral equation solution for the bound, leaky, and complex modes of dielectric waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 1225-1232 (1990).
  19. H. Cheng, W. Y. Crutchfield, M. Doery, and L. Greengard, "Fast, accurate integral equation methods for the analysis of photonic crystal fibers," Opt. Express. 12, 3791-3805 (2004). [CrossRef] [PubMed]
  20. D. L. Young, S. P. Hu, C. W. Chen, C. M. Fan, and K. Murugesan, "Analysis of elliptical waveguides by the method of fundamental solutions," Microwave Opt. Technol. Lett. 44, 552-558 (2005). [CrossRef]
  21. R. Lehoucq, D. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM Publications, Philadelphia, 1998).
  22. C. F. Van Loan, "Generalizing the singular value decomposition," SIAM J. Numer. Anal. 13, 76-83 (1976). [CrossRef]
  23. R. Brent, Algorithms for minimization without derivatives (Dover Publications, 2002).
  24. B. N. Datta, Numerical Linear Algebra and Applications (Brooks/Cole, Pacific Grove, CA, 1994).
  25. C. G. Broyden, "The convergence of a class of double-rank minimization algorithms," J. Inst. Math. Appl. 6, 76-90 (1970). [CrossRef]
  26. G. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins Univ. Pr, 1996).
  27. K. Lo, R. McPhedran, I. Bassett, and G. Milton, "An electromagnetic theory of dielectric waveguides with multiple embedded cylinders," J. Lightwave Technol. 12, 396-410 (1994). [CrossRef]
  28. M. J. Steel and R. OsgoodJr, "Polarization and dispersive properties of elliptical-hole photoniccrystal fibers," J. Lightwave Technol. 19, 495-503 (2001). [CrossRef]
  29. P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results," IEEE Trans. Microwave Theory and Tech. 23, 421-429 (1975). [CrossRef]
  30. D. Marcuse, Light Transmition Optics, 2nd ed. (Rober E. Krieger Publishing Company, Malabar, Florida, 1989).
  31. J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235,402 (2001). [CrossRef]
  32. J. Krenn and J. Weeber, "Surface plasmon polaritons in metal stripes and wires," Philos. Trans. R. Soc. London Ser. A:Mathematical, Physical and Engineering Sciences 362, 739-756 (2004). [CrossRef]
  33. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. Aussenegg, and J. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257,403 (2005). [CrossRef]
  34. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994). [CrossRef]
  35. P. Johnson and R. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  36. J. Burke, G. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  37. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10,484-10,503 (2000). [CrossRef]
  38. M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, "Comparison of different methods for rigorous modeling of photonic crystal fibers," Opt. Express 14, 5699-5714 (2006). [CrossRef] [PubMed]
  39. A. Webb, F. Poletti, D. Richardson, J. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010,503 (2007). [CrossRef]
  40. A. Hochman and Y. Leviatan, "Calculation of confinement losses in photonic crystal fibers by use of a sourcemodel technique," J. Opt. Soc. Am. B 22, 474-480 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3697 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited