OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14619–14628

Dual-probe near-field fiber head with gap servo control for data storage applications

Jen-Yu Fang, Chung-Hao Tien, and Han-Ping D. Shieh  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14619-14628 (2007)
http://dx.doi.org/10.1364/OE.15.014619


View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.

© 2007 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(210.0210) Optical data storage : Optical data storage
(220.4830) Optical design and fabrication : Systems design
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: June 25, 2007
Revised Manuscript: August 31, 2007
Manuscript Accepted: September 6, 2007
Published: October 22, 2007

Citation
Jen-Yu Fang, Chung-Hao Tien, and Han-Ping D. Shieh, "Dual-probe near-field fiber head with gap servo control for data storage applications," Opt. Express 15, 14619-14628 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14619


Sort:  Year  |  Journal  |  Reset  

References

  1. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  2. E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992). [CrossRef] [PubMed]
  3. B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1995). [CrossRef]
  4. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 14, 3055-3065 (2004). [CrossRef]
  5. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  6. W.-H. Yeh and M. Mansuripur, "Evanescent coupling in magneto-optical and phase-change disk systems based on the solid immersion lens," Appl. Opt. 39, 302-315 (2000). [CrossRef]
  7. F. Guo, T. E. Schlesinger, and D. D. Stancil, "Optical field study of near-field optical recording with a solid immersion lens," Appl. Opt. 39, 324-332 (2000). [CrossRef]
  8. T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724, (2003). [CrossRef]
  9. J. I. Lee, M. A. H. van der Aa, C. A. Verschuren, F. Zijp, and M. B. van der Mark, "Development of an air gap servo system for high data transfer rate near field optical recording," Jpn. J. Appl. Phys. 44, 3423-3426 (2005). [CrossRef]
  10. T. Yatsui, M. Kourogi, and M. Ohtsu, "Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure," Appl. Phys. Lett. 73, 2090-2092 (1998). [CrossRef]
  11. P. N. Minh, T. Ono, H. Watanabe, S. S. Lee, Y. Haga, and M. Esashi, "Hybrid optical fiber-apertured cantilever near-field probe," Appl. Phys. Lett. 79, 3020-3022 (2001). [CrossRef]
  12. G. M. Kim, B. J. Kim, E. S. Ten Have, F. Segerink, N. F. Van Hulst, and J. Brugger, "Photoplastic near-field optical probe with sub-100 nm aperture made by replication from a nanomould," J. Microsc. 209, 267-271 (2002). [CrossRef]
  13. P. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, "High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy," Appl. Phys. Lett. 86, 0131023 (2005). [CrossRef]
  14. C.-H. Tien, Y.-C. Lai, T. D. Milster, and H.-P. D. Shieh, "Design and fabrication of fiberlenses for optical recording applications," Jpn. J. Appl. Phys. 41, 1834-1837 (2002). [CrossRef]
  15. C.-H. Tien, H.-L. Chou, Y. Chiu, W. Hsu, T. D. Milster, Y.-C. Lai, and H.-P. D. Shieh, "Fiber-lens-based module for optical recording applications," Jpn. J. Appl. Phys. 42, 4345-4348 (2003). [CrossRef]
  16. Y.-J Kim, K. Suzuki, and K. Goto, "Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage," Jpn. J. Appl. Phys. 40, 1783-1789 (2001). [CrossRef]
  17. M. Hirata, M. Oumi, K. Nakajima, and T. Ohkubo, "Near-field optical flying head with protruding aperture and its fabrication," Jpn. J. Appl. Phys. 44, 3519-3523 (2005). [CrossRef]
  18. A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83, 4474-4476 (2003). [CrossRef]
  19. X. Shi, R. L. Thornton, and L. Hesselink, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003). [CrossRef] [PubMed]
  20. X. Shi and L. Hesselink, "Design of a C aperture to achieve λ/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004). [CrossRef]
  21. L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606-3608 (2006). [CrossRef] [PubMed]
  22. K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004). [CrossRef]
  23. Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh," High-transmission hybrid-effect-assisted nanoaperture," Opt. Lett. 31, 655-657 (2006). [CrossRef] [PubMed]
  24. Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, "Double-corrugated c-shaped aperture for near-field recording," Jpn. J. Appl. Phys. 45, 1348-1350 (2006). [CrossRef]
  25. Y. Xie, A. R. Zakharian, J. V. Moloney and M. Mansuripur, "Optical transmission at oblique incidence through a periodic array of sub-wavelength slits in a metallic host," Opt. Express 14, 10220-10227 (2006). [CrossRef] [PubMed]
  26. P.-K Wei, Y.-C. Huang, C.-C. Chieng, F.-G. Tseng and W. Fann, "Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits," Opt. Express 13, 10784-10794 (2005). [CrossRef] [PubMed]
  27. H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988)
  28. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A: Pure Appl. Opt. 4, S283-S294 (2002). [CrossRef]
  29. R. O. Miles, A. Dandridge, A. B. Tveten, and T. G. Gialloenzi, "An external cavity diode laser sensor," J. Lightwave Technol. LT-1, 81-93 (1983). [CrossRef]
  30. J.-Y. Kim and H. C. Hsieh, "An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head," J. Lightwave Technol. 10, 439-447 (1992). [CrossRef]
  31. J.-Y. Kim and H. C. Hsieh, "Asymmetry in the optical output power characteristics of a short-external-cavity laser diode," IEEE Photon. Technol. Lett. 4, 537-539 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited