OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14629–14635

Tunable transmission at 100 THz through a metallic hole array with a varying hole channel shape

Arvind Battula, Yalin Lu, R. J. Knize, Kitt Reinhardt, and Shaochen Chen  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14629-14635 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Extraordinary optical transmission spectrum for a two-dimensional metallic hole array (2D-MHA) changes with the hole channel shape. In this paper a new converging-diverging channel (CDC) shape is proposed. A three-dimensional (3D) finite element method is utilized to analyze the transmission characteristics of the 2D-MHA with CDC. The transmission peaks are blue-shifted when the gap at the throat of CDC is reduced. Similar blue-shift in the transmission peaks are observed for a straight channel MHA when the aperture size is reduced. The transmission for the straight channel MHA is not sensitive to the metal film thickness. But, for a CDC MHA the transmission varies with the metal film thickness. Also, the CDC shape gives an extra degree of geometrical variable to 2D-MHA for tuning the transmission peak location with potential applications in nanolithography, imaging and biosensing.

© 2007 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1220) Diffraction and gratings : Apertures
(120.2440) Instrumentation, measurement, and metrology : Filters
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Diffraction and Gratings

Original Manuscript: September 13, 2007
Revised Manuscript: October 18, 2007
Manuscript Accepted: October 19, 2007
Published: October 22, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Arvind Battula, Yalin Lu, R. J. Knize, Kitt Reinhardt, and Shaochen Chen, "Tunable transmission at 100 THz through a metallic hole array with a varying hole channel shape," Opt. Express 15, 14629-14635 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 351, 667, 1998. [CrossRef]
  2. Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  3. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629 (2004). [CrossRef] [PubMed]
  4. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39 (2007). [CrossRef]
  5. D. Qu, D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896 (2004). [CrossRef] [PubMed]
  6. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664 (2004). [CrossRef] [PubMed]
  7. F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742 (2004). [CrossRef]
  8. J. O’Hara, R. D. Averitt, and A. J. Taylor, "Terahertz surface plasmon polariton coupling on metallic gratings," Opt. Express 12, 6397 (2004). [CrossRef] [PubMed]
  9. A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005). [CrossRef]
  10. J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201306 (2003). [CrossRef]
  11. C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, "Optimization of enhanced terahertz transmission through arrays of subwavelength apertures," Phys. Rev. B 69, 205314 (2004). [CrossRef]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847 (2004). [CrossRef] [PubMed]
  13. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa and E. Sano "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30, 1210 (2005). [CrossRef] [PubMed]
  14. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays," Phys. Rev. Lett. 92, 037401 (2004). [CrossRef] [PubMed]
  15. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  16. J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004). [CrossRef]
  17. X. L. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320 (2003). [CrossRef] [PubMed]
  18. Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, "Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method," Appl. Phys. Lett. 85, 654 (2004). [CrossRef]
  19. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays," Phys. Rev. Lett. 94, 033902 (2005). [CrossRef] [PubMed]
  20. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  21. Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang and Y-y Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005). [CrossRef]
  22. K. Nishio and H. Masuda, "Dependence of optical properties of ordered metal hole array on refractive index of surrounding medium," Electrochem. Solid-State Lett. 7, H27 (2004). [CrossRef]
  23. C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani and M. Hangyo, "Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal," Opt. Express 13, 3921 (2005). [CrossRef] [PubMed]
  24. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327 (2002). [CrossRef]
  25. A. Z. Azad, and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Opt. Lett. 30, 2945 (2005). [CrossRef] [PubMed]
  26. D. Korobkin, Y. A. Urzhumov, B. NeunerIII, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, "Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions," Appl. Phys. A,  88, 605 (2007). [CrossRef]
  27. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express,  14, 5664 (2006). [CrossRef] [PubMed]
  28. H. Daninthe, S. Foteinopoulou, C. M. Soukoulis, "Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials," Photonics Nanostruct. Fundam. Appl. 4, 123 (2006). [CrossRef]
  29. A. Battula, and S. C. Chen, "Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels," Appl. Phys. Lett. 89, 131113 (2006). [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. COMSOL 3.2a Reference Manual, version 3.2 ed. (Comsol AB, 2005).
  32. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234 (2004). [CrossRef] [PubMed]
  33. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163 (1944). [CrossRef]
  34. C. J. Bouwkamp, "On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes," Philips Res. Rep. 5, 401 (1950).
  35. K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited