OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14689–14703

Theory of light emission from a dipole source embedded in a chiral sculptured thin film

Tom G. Mackay and Akhlesh Lakhtakia  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14689-14703 (2007)
http://dx.doi.org/10.1364/OE.15.014689


View Full Text Article

Enhanced HTML    Acrobat PDF (549 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Developing a theory based on a spectral Green function for light emission from a point–dipole source embedded in a chiral sculptured thin film (CSTF), we found that the intensity and polarization of the emitted light are strongly influenced by the structural handedness of the CSTF as well as the placement and orientation of the source dipole. The emission patterns across both pupils of the dipole–containing CSTF can be explained in terms of the circular Bragg phenomenon exhibited by CSTFs when illuminated by normally as well as obliquely incident plane waves. The emission characteristics augur well for the future of CSTFs as optical biosensors as well as light emitters with controlled circular polarization and bandwidth.

© 2007 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.3800) Physical optics : Luminescence
(310.6860) Thin films : Thin films, optical properties
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Physical Optics

History
Original Manuscript: September 5, 2007
Revised Manuscript: October 1, 2007
Manuscript Accepted: October 1, 2007
Published: October 24, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Tom G. Mackay and Akhlesh Lakhtakia, "Theory of light emission from a dipole source embedded in a chiral sculptured thin film," Opt. Express 15, 14689-14703 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14689


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165176 (1996).
  2. I. Hodgkinson and Q. h. Wu, "Inorganic chiral optical materials," Adv. Mater. 13, 889-897 (2001). [CrossRef]
  3. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2005). [CrossRef]
  4. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, NY, USA, 1993).
  5. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000). [CrossRef]
  6. I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, "Spectral-hole filter fabricated using scultured thin-film technology," Opt. Commun. 177, 79-84 (2000). [CrossRef]
  7. J. A. PoloJr., "Sculptured thin films," in: Micromanufacturing and Nanotechnology, pp. 357-381, N. P. Mahalik, ed., Springer, Heidelberg, Germany (2005).
  8. A. Lakhtakia, M. C. Demirel, M.W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2008); in press.
  9. R. Messier, V. C. Venugopal, and P. D. Sunal, "Origin and evolution of sculptured thin films," J. Vac. Sci. Technol. A 18, 1538-1545 (2000). [CrossRef]
  10. A. Lakhtakia, "On bioluminescent emission from chiral sculptured thin films," Opt. Commun. 188, 313-320 (2001). [CrossRef]
  11. H. Tan, O. Ezekoye, J. van der Schalie, M.W. Horn, A. Lakhtakia, J. Xu, andW. D. Burgos, "Biological reduction of nanoengineered iron III oxide sculptured thin films," Environ. Sci. Technol. 40, 5490-5495 (2006). [CrossRef] [PubMed]
  12. S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, "Nanoscale silicon microcavities for biosensing," Mater. Sci. Eng. C 15, 277-282 (2001). [CrossRef]
  13. L. De Stefano, I. Rendina, A. M. Rossi, M. Rossi, L. Rotiroti, and S. D’Auria, "Biochips at work: porous silicon microbiosensor for proteomic diagnostic," J. Phys.: Condens. Matter 19, 395007 (2007). [CrossRef]
  14. K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature 384, 616 (1996). [CrossRef]
  15. P. C. P. Hrudey, K. L. Westra, and M. J. Brett, "Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition," Adv. Mater. 18, 224-228 (2006). [CrossRef]
  16. J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, "Circularly polarized fluorescence from light- emitting microcavities with sculptured-thin-film chiral reflectors," Opt. Commun. 264, 235-239 (2006). [CrossRef]
  17. S. K. Arya, A. Chaubey, and B. D. Malhotra, "Fundamentals and applications of biosensors," Proc. Ind. Natn. Sci. Acad. 72, 249-266 (2006).
  18. A. Dorfman, N. Kumar, and J.-i. Hahm, "Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms," Langmuir 22, 4890-4895 (2006). [CrossRef] [PubMed]
  19. F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, and M. W. Horn, "Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors," Appl. Phys. Lett. 91, 023102 (2007). [Interchange the labels LCP and RCP in Fig. 2c of this paper.] [CrossRef]
  20. B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, Germany, 2002).
  21. A. Ishchenko, "Molecular engineering of dye-doped polymers for optoelectronics," Polym. Adv. Technol. 13, 744-752 (2003). [CrossRef]
  22. F. Boxberg and J. Tulkki, "Quantum dots: Phenomenology, photonic and electronic properties, modeling and technology," in: Nanometer Structures — Theory, Modeling, and Simulation, pp. 107-143, A. Lakhtakia, ed., SPIE Press, Bellingham, WA, USA (2004).
  23. A. Lakhtakia, "On radiation from canonical source configurations embedded in structurally chiral materials," Microwave Opt. Technol. Lett. 37, 37-40 (2003). [CrossRef]
  24. M. P. C. M. Krijn, "Electromagnetic wave propagation in stratified anisotropic media in the presence of sources," Opt. Lett. 17, 163-165 (1992). [Although Eq. (10) of this paper is not rigorously valid unless the matrix ⊗(z) therein is either diagonal or independent of z, it can be useful with the piecewise uniform approximation technique provided a space-ordering operator is implemented on its right side [25].] [CrossRef] [PubMed]
  25. K. Eidner, "Light propagation in stratified anisotropic media: orthogonality and symmetry properties of the 4×4 matrix formalisms," J. Opt. Soc. Am. A 6, 1657-1660 (1989). [CrossRef]
  26. A. Lakhtakia and W. S. Weiglhofer, "Green function for radiation and propagation in helicoidal bianisotropic mediums," IEE Proc.-Microw. Antennas Propag. 144, 57-59 (1997). [CrossRef]
  27. A. Lakhtakia and M. W. McCall, "Response of chiral sculptured thin films to dipolar sources," Int. J. Electron. Commun. (AE ¨ U) 57, 23-32 (2003). [CrossRef]
  28. D. W. Berreman, "Optics in stratified and anisotropic media: 4×4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972). [CrossRef]
  29. M. Born and E. Wolf, Principles of Optics, Appendix III, 7th ed. (Pergamon, Oxford, UK, 1999).
  30. F. Wang, "Note on the asymptotic approximation of a double integral with an angular-spectrum representation," Int. J. Electron. Commun. (AEU) 59, 258-261 (2005). [CrossRef]
  31. F. Wang and A. Lakhtakia, "Response of slanted chiral sculptured thin films to dipolar sources," Opt. Commun. 235, 133-151 (2004). [CrossRef]
  32. M. D. Pickett, A. Lakhtakia, and J. A. PoloJr., "Spectral responses of gytrotropic chiral sculptured thin films to obliquely incident plane waves," Optik 9, 393-398 (2004). [CrossRef]
  33. X.-H. Xu and A. J. Bard, "Immobilization and hybridization of DNA on an aluminum (III) alkanebisphophonate thin film with electrogenerated chemiluminescent detection," J. Am. Chem. Soc. 117, 2627-2631 (1995). [CrossRef]
  34. W. Tabbara, V. Rannou, and S. Salio, "Statistical approaches to scattering," in: Introduction to Complex Mediums for Optics and Electromagnetics, pp. 591-608,W. S.Weiglhofer and A. Lakhtakia, eds., SPIE Press, Bellingham, WA, USA (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited