OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14772–14782

Transformation-designed optical elements

D. Schurig, J. B. Pendry, and D. R. Smith  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14772-14782 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe transformation design of optical elements which, in addition to image transfer, perform useful operations. For one class of operations, including translation, rotation, mirroring and inversion, an image can be generated that is ideal in the sense of the perfect lens (combining both near- and far-field components in a flat, unit transfer function, up to the limits imposed by material imperfection). We also describe elements that perform magnification, free from geometric aberrations, even while providing free-space working distance on both the input and output sides. These magnifying elements also operate in the near- and far-field, allowing them to transfer near field information into the far field, as with the hyper lens and other related devices, however in contrast to those devices, insertion loss can be much lower, due to the matching properties accessible with transformation design. The devices here described inherently require dispersive materials, thus chromatic aberration will be present, and the bandwidth limited.

© 2007 Optical Society of America

OCIS Codes
(070.4690) Fourier optics and signal processing : Morphological transformations
(100.6640) Image processing : Superresolution
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 14, 2007
Revised Manuscript: October 15, 2007
Manuscript Accepted: October 17, 2007
Published: October 24, 2007

D. Schurig, J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express 15, 14772-14782 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. Pendry, D. Schurig, and D. Smith, "Controlling electromagnetic fields," Science 312, 1780-2 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. Pendry, and D. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006). [CrossRef] [PubMed]
  3. G. Milton, M. Briane, and J. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006). [CrossRef]
  4. S. Cummer and D. Schurig, "One path to acoustic cloaking," New J. Phys. 9, 45 (2007). [CrossRef]
  5. B. Wood and J. Pendry, "Metamaterials at zero frequency," J. Phys., Condens. Matter. 19, 076208 (2007). [CrossRef]
  6. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, "Optical cloaking with metamaterials," 1, 224-227 Nature Photonics (2007). [CrossRef]
  7. M. Silveirinha, A. Alu, and N. Engheta, "Parallel-plate metamaterials for cloaking structures," Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 75, 36603 (2007). [CrossRef]
  8. F. Teixeira, "Closed-form metamaterial blueprints for electromagnetic masking of arbitrarily shaped convex PEC objects," IEEE Antennas Wirel. Propag. Lett. 6, 163-4 (2007). [CrossRef]
  9. F. Zolla, S. Guenneau, A. Nicolet, and J. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-71 (2007). [CrossRef] [PubMed]
  10. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006). [CrossRef] [PubMed]
  11. J. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-9 (2000). [CrossRef] [PubMed]
  12. J. Pendry and S. Ramakrishna, "Near-field lenses in two dimensions," J. Phys., Condens. Matter. 14, 8463-79 (2002). [CrossRef]
  13. J. Pendry, "Perfect cylindrical lenses," Opt. Express 11, 755-760 (2003). [CrossRef] [PubMed]
  14. Z. Jacob, L. Alekseyev, and E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express 14,8247-56 (2006). [CrossRef] [PubMed]
  15. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations," Phys. Rev., B, Condens, Matter Mater. Phys. 74, 75103 (2006). [CrossRef]
  16. D. Smith and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]
  17. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007). [CrossRef] [PubMed]
  18. I. Smolyaninov, Y.-J. Hung, and C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-701 (2007). [CrossRef] [PubMed]
  19. G. Shvets, S. Trendafilov, J. Pendry, and A. Sarychev, "Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007). [CrossRef] [PubMed]
  20. D. Schurig and D. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys. 7, 162 (2005). [CrossRef]
  21. V. Shalaev, "Optical negative-index metamaterials," 1, 41-48 Nature Photonics (2007). [CrossRef]
  22. C. Soukoulis, S. Linden, and M. Wegener, "Negative Refractive Index at Optical Wavelengths," Science 315, 47-9 (2007). [CrossRef] [PubMed]
  23. H. Lezec, J. Dionne, and H. Atwater, "Negative refraction at visible frequencies," Science 316, 430-2 (200). [PubMed]
  24. U. Leonhardt and T. Philbin, "General relativity in Electrical Engineering," New J. Phys. 8, 247 (2006). [CrossRef]
  25. V. Mahajan, Optical imaging and aberrations (SPIE Optical Engineering Press, 1998). [CrossRef]
  26. D. Schurig and D. Smith, "Negative index lens aberrations," Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 70, 65601 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited