OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14793–14803

Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14793-14803 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The external quantum efficiency of solar cells can be improved by using texturing pyramid- and honeycomb-like structures with minimum reflection. In this study, we investigated the reflection properties of texturing structures through rigorous coupled-wave analysis and the three-dimensional finite-difference time domains (FDTD) method to analyze close-packed texturing structures. We also demonstrate a simple method—combining sub-wavelength-scale monolayer and bilayer polystyrene spheres with a one-step reactive ion etching process—to fabricate optimized pyramid- and honeycomb-shaped antireflection structures, respectively. Thus, sub-wavelength pyramidal and honeycomb-like structures displaying low reflectance were obtained readily without the need for any lithography equipment.

© 2007 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(230.4000) Optical devices : Microstructure fabrication
(310.1210) Thin films : Antireflection coatings

ToC Category:
Optical Devices

Original Manuscript: July 9, 2007
Revised Manuscript: October 12, 2007
Manuscript Accepted: October 12, 2007
Published: October 25, 2007

H. L Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, "Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells," Opt. Express 15, 14793-14803 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. I. M. Dharmadasa, "Third generation multi-layer tandem solar cells for achieving high conversion efficiencies," Sol. Energy Mater. Sol. Cells 85, 293-300 (2005). [CrossRef]
  2. M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, "Solar cell efficiency tables," Prog. Photovoltaics 11, 39-45 (2003). [CrossRef]
  3. S. Siebentritt, "Wide gap chalcopyrites: material properties and solar cells," Thin Solid Films. 403-404,1-8 (2002). [CrossRef]
  4. E. D. Palik, in Handbook of Optical Constants of Solids, (Academic Press, 1998).
  5. H. A. Macleod, in Thin-Film Optical Filters, 2nd Ed., (Adam Hilger Ltd., 1986). [CrossRef]
  6. B. Kumar, T. B. Pandian, E. Sreekiran, and S. Narayanan, "Benefit of dual layer silicon nitride antireflection coating," in Proceedings of IEEE Conference on Photovoltaic Specialists, 1205-1208 (2005).
  7. D. H. Macdonald, A. Cuevas, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells," Sol. Energy Mater. Sol. Cells. 80, 227-237 (2004).
  8. J. D. Hylton, A. R. Burger, and W. C. Sinke, "Alkaline etching for reflectance reduction in multicrystalline silicon solar cells," J. Electrochem. Soc. 151, 408-427 (2004). [CrossRef]
  9. R. Bilyalov, L. Stalmans, and J. Poortmans, "Comparative analysis of chemically and electrochemically formed porous Si antireflection coating for solar cells," J. Electrochem. Soc. 150, 216-222 (2003). [CrossRef]
  10. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, "Antireflection microstructures fabricated upon fluorine-doped SiO2," Opt. Lett. 26, 1642-1644 (2001). [CrossRef]
  11. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, "Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff," J. Vac. Sci. Technol. B. 21, 2874-2877 (2003). [CrossRef]
  12. S. H. Zaidi, D. S. Ruby, and J. M. Gee, "Characterization of random reactive ion etched-textured silicon solar cells," IEEE Trans Electron Devices 48,1200-1206 (2001). [CrossRef]
  13. J. Zhao, A. Wang, and M. A. Green, "19.8% efficient ‘honeycomb’ textured muticrystalline and 24.4% monocrstalline silicon solar cells," Appl. Phys. Lett. 78, 1991-1993 (1998). [CrossRef]
  14. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A. 14, 2758-2767 (1997). [CrossRef]
  15. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, "Broadband antireflective surface-relief structure for THz optics," Opt. Express 15, 779-789 (2007). [CrossRef] [PubMed]
  16. C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh and W. H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectron. Eng. 83, 1798-1804 (2006). [CrossRef]
  17. A. K. Wong, "Resolution enhancement techniques," The International Society for Optical Engineering (SPIE) (2001).
  18. S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, "Nanomachining by colloidal lithography," Small 2, 458-475 (2006). [CrossRef] [PubMed]
  19. J. H. Moon, S. G. Jang, J. M. Lim, and S. M. Yang, "Multiscale nanopatterns templated from two-dimensional assemblies of photoresist particles," Adv. Mater. 17, 2559-2562 (2005). [CrossRef]
  20. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, "Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks," Small 1, 439-444, (2005). [CrossRef]
  21. D. L. J. Vossen, D. Fific, J. Penninkhof, T. Dillen, A. Polman, and A. Blaaderen, "Combing optical tweezers/ion beam technique to tune colloidal masks for nanolithography," Nano Lett. 5, 1175-1179 (2005). [CrossRef] [PubMed]
  22. Y. Zhao, J. Wang, and G. Mao, "Colloidal subwavelength nanostructures for antireflection optical coatings," Opt. Lett. 30, 1885-1887 (2005). [CrossRef] [PubMed]
  23. H. Xiao, in Introduction to Semiconductor Manufacturing Technology, (Prentice Hall Inc., 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited