OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14817–14837

Joint nonuniform illumination estimation and deblurring for bar code signals

Jeongtae Kim and Hana Lee  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14817-14837 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel joint nonuniform illumination estimation and deblurring method for bar code signals based on a penalized nonlinear squares objective function. The objective function is based on the proper parameterization of a bar code signal and nonuniform illumination as well as a regularization on the illumination using a smoothness penalty. By the minimization of the objective function, the proposed method simultaneously estimates the bar code signal and illumination in the spatial domain. In simulations and experiments, the proposed method showed improved performance compared with two conventional bar code decoding methods without deblurring or nonuniform illumination correction. In a few iterations, the proposed method was able to decode test bar code signals that were not decodable due to blurring or nonuniform illumination.

© 2007 Optical Society of America

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(150.2950) Machine vision : Illumination
(100.1455) Image processing : Blind deconvolution

ToC Category:
Image Processing

Original Manuscript: August 28, 2007
Revised Manuscript: October 16, 2007
Manuscript Accepted: October 22, 2007
Published: October 25, 2007

Jeongtae Kim and Hana Lee, "Joint nonuniform illumination estimation and deblurring for bar code signals," Opt. Express 15, 14817-14837 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. E. Joseph and T. Pavlids, "Deblurring of bilevel waveforms," IEEE Trans. Image Process. 2, 223-235 (1993). [CrossRef] [PubMed]
  2. E. Joseph and T. Pavlids, "Bar code waveform recognition using peak locations," IEEE Trans. Pattern Anal. Mach. Intell. 16, 630-640 (1994). [CrossRef]
  3. S. Esedoglu, "Blind deconvolution of bar code signals," Inverse Probl. 20, 121-135 (2004). [CrossRef]
  4. E. Marom, S. Krešić-Jurić, and L. Bergstein, "Analysis of speckle noise in bar-code scanning systems," J. Opt. Soc. Am. A 18, 889-901 (2001). [CrossRef]
  5. E. Marom, S. Krešić-Jurić, and L. Bergstein, "Speckle noise in bar-code scanning systems-power spectral density and SNR," Appl. Opt. 42, 161-174 (2003). [CrossRef] [PubMed]
  6. S. Krešić-Jurić, "Edge detection in bar code signals corrupted by integrated time-varying speckle," Pattern Recogn. 38, 2483-2493 (2005). [CrossRef]
  7. L. Qu and Y. C. Tu, "Change point estimation of bilevel functions," J. Mod. Appl. Stat. Meth. 5, 347-355 (2006).
  8. R. C. Palmer, The bar code book: reading, printing and specification of bar code symbols (Helmers Publishing Inc. 1999).
  9. J. S. Chen and G. Medioni, "Detection, localization and estimation of edges," IEEE Trans. Pattern Anal. Mach. Intell. 11, 191-198 (1989). [CrossRef]
  10. M. D. Sanner, "Ambient illumination bar code reader," U. S. Patent 4,874,933 (1989).
  11. J. Debiez and F. Lerat, "Intelligent light source," U. S. Patent 6,774,893 B2 (2004).
  12. R. Shams and P. Sadeghi, "Bar code recognition in highly distorted and low resolution images," in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2007) pp. 737-740.
  13. D. A. Forsyth and J. Ponce, Computer vision: A modern approach (Prentice Hall, 2003).
  14. T. Chen, W. Yin, X. S. Zhou, D. Comaniciu, and T. S. Huang, "Total variation models for variable lighting face recognition," IEEE Trans. Pattern Anal. Mach. Intell. 28, 1519-1524 (2006). [CrossRef] [PubMed]
  15. D. Tomazevic, B. Likar, and F. Pernus, "Comparative evaluation of retrospective shading correction methods," J. Microsc. 208, 212-223 (2002). [CrossRef] [PubMed]
  16. Z. Hou, "A review on MR image inhomogeneity correction," Int. J. Biomed. Imaging 2006, 1-11 (2006). [CrossRef]
  17. B. Likar, J. B. A. Maintz, M. A. Viergever, and F. Pernus, "Retrospective shading correction based on entropy minimization," J. Microsc. 197, 285-295 (2000). [CrossRef] [PubMed]
  18. B. H. Brinkmann, A. Manduca, and R. A. Robb, "Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction," IEEE Trans. Med. Imag. 17, 161-171 (1998). [CrossRef]
  19. J. G. Sled, A. P. Zijdenbos, and A. C. Evans, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data," IEEE Trans. Med. Imag. 17, 87-97 (1998). [CrossRef]
  20. M. S. Brown and Y. C. Tsoi, "Geometric and shading correction for images of printed materials using boundary," IEEE Trans. Image Process. 15, 1544-1554 (2006). [CrossRef] [PubMed]
  21. M. Unser, "Splines: A perfect fit for signal and image processing," IEEE Signal Process. Mag. 16, 22-38 (1999). [CrossRef]
  22. D. G. Bailey, "Super-resolution of bar codes," J. Electron. Imag. 10, 213-220 (2001). [CrossRef]
  23. Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, "Robust mean-squared error estimation in the presence of model uncertainties," IEEE Trans. Signal Process. 53, 168-181 (2005). [CrossRef]
  24. M. Gulliksson, "KKT conditions for rank-deficient nonlinear least-squares problems with rank-deficient nonlinear constraints," J. Optim. Theor. Appl. 100, 145-160 (1999). [CrossRef]
  25. P. E. Gill and W. Murray, "Algorithms for the solution of the nonlinear least-squares problem," SIAM J. Numer. Anal. 15, 977-992 (1978). [CrossRef]
  26. J. Eriksson, P. A. Wedin, M. E. Gulliksson, and I. Soderkvist, "Regularization methods for uniformly rankdeficient nonlinear least-squares problems," J. Optim. Theor. Appl. 127, 1-26 (2005). [CrossRef]
  27. E. Kreyszig, Advanced Engineering Mathematics, 8th ed. (Wiley, 1998).
  28. J. A. Fessler, "Penalized weighted least-squares image reconstruction for positron emission tomography," IEEE.Trans. Med. Imag. 13, 290-300 (1997). [CrossRef]
  29. J. Kim, Intensity-based image registration using robust similarity measure and constrained optimization: Applications for radiation therapy, Ph.D. dissertation, The University of Michigan, Ann Arbor, 2004. [PubMed]
  30. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic Press, 1981).
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, 2nd ed. (Cambridge, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited