OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14861–14869

Demonstration of air-guided quantum cascade lasers without top claddings

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. WIlson, and A. B. Krysa  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14861-14869 (2007)
http://dx.doi.org/10.1364/OE.15.014861


View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on quantum cascade lasers employing waveguides based on a predominant air confinement mechanism in which the active region is located immediately at the device top surface. The lasers employ ridge-waveguide resonators with narrow lateral electrical contacts only, with a large, central top region not covered by metallization layers. Devices based on this principle have been reported in the past; however, they employed a thick, doped top-cladding layer in order to allow for uniform current injection. We find that the in-plane conductivity of the active region - when the material used is of high quality - provides adequate electrical injection. As a consequence, the devices demonstrated in this work are thinner, and most importantly they can simultaneously support air-guided and surface-plasmon waveguide modes. When the lateral contacts are narrow, the optical mode is mostly located below the air-semiconductor interface. The mode is predominantly air-guided and it leaks from the top surface into the surrounding environment, suggesting that these lasers could be employed for surface-sensing applications. These laser modes are found to operate up to room temperature under pulsed injection, with an emission spectrum centered around λ ≈ 7:66 μm.

© 2007 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 10, 2007
Revised Manuscript: August 21, 2007
Manuscript Accepted: August 21, 2007
Published: October 26, 2007

Citation
V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14861


Sort:  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, "Quantum cascade laser," Science 264, 553 (1994). [CrossRef] [PubMed]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Progr. in Physics 64, 1533 (2001). [CrossRef]
  3. J. Faist and C. Sirtori, in ’Long wavelength infrared semiconductor lasers’ (J. Wiley and Sons, Hoboken, NJ, USA, 2004).
  4. M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301 (2002). [CrossRef] [PubMed]
  5. J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, "High-power continuous-wave operation of a 6 µm quantum-cascade laser at room temperature," Appl. Phys. Lett. 83, 2503 (2003). [CrossRef]
  6. M. Troccoli, D. Bour, S. Corzine, G. Hofler, A. Tandon, D. Mars, D. J. Smith, L. Diehl, and F. Capasso, "Lowthreshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5842 (2004). [CrossRef]
  7. G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F.K. Tittel, "Pulsed Quantum-Cascade Laser-Based Sensor for Trace-Gas Detection of Carbonyl Sulfide," App. Opt. 43, 6040 (2004). [CrossRef]
  8. A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Elec. 38, 582 (2002). [CrossRef]
  9. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and Demetri Psaltis, "Nanofluidic tuning of photonic crystal circuits," Proc. SPIE 6475, 647513 (2007). [CrossRef]
  10. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, "Liquidcrystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360 (2004). [CrossRef]
  11. M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003). [CrossRef]
  12. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nature Photon. 1, 106 (2007). [CrossRef]
  13. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 (2006). [CrossRef] [PubMed]
  14. M. Schaden, A. Doninguez-Vidal, and B. Lendl, "Simultaneous measurement of two compounds in aqueous solution with dual quantum cascade laser absorption spectroscopy," Appl. Phys. B 83, 135 (2006). [CrossRef]
  15. M. Loncar, B. G. Lee, L. Diehl, M. A. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, "Design and fabrication of photonic crystal quantum cascade lasers for optofluidics," Opt. Express 15, 4499 (2007). [CrossRef] [PubMed]
  16. J. Chen, Z. Liu, C. F. Gmachl, and D. L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room tempreature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005). [CrossRef] [PubMed]
  17. C. Charlton, A. Katzir, and B. Mizaikoff, "Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides," Anal. Chem. 77, 4398 (2005). [CrossRef] [PubMed]
  18. R. Perahia, K. Srinivasan, O. Painter, V. Moreau, M. Bahriz, R. Colombelli, F. Capasso, "Quantum cascade photonic crystal lasers: design, fabrication, and applications," CLEO 2006 (CTuAA5), Long Beach CA, May 2006.
  19. R. Perahia, O. Painter, M. Bahriz, V. Moreau, R. Colombelli, "Design of quantum cascade lasers for intra-cavity sensing in the mid infrared," manuscript in preparation.
  20. R. Perahia, O. Painter, V. Moreau, M. Bahriz, R. Colombelli, L.R. Wilson, A.B. Krysa, "Quantum Cascade Microdisk Lasers for Mid Infrared Intra-Cavity Sensing," CLEO 2007 (CTuE5), Baltimore (MA), May 2007.
  21. L. Diehl, B.G. Lee, P. Behroozi, M. Loncar, M.A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660 (2006). [CrossRef] [PubMed]
  22. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C.F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374 (2003). [CrossRef] [PubMed]
  23. D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000). [CrossRef]
  24. W. Schrenk and N. Finger and S. Gianordoli and L. Hvozdara and G. Strasser and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086 (2000). [CrossRef]
  25. C. Sirtori and C. Gmachl and F. Capasso and J. Faist and D. L. Sivco and A. L. Hutchinson and A. Y. Cho, "Longwavelength (l ¼ 8¡11:5 µm) semiconductor lasers with waveguides based on surface plasmons," Opt. Lett. 23, 1366 (1998). [CrossRef]
  26. M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D.A. Austin, J.W. Cockburn, L.R. Wilson, A.B. Krysa, J.S. Roberts, "Room temperature operation of l ¼ 7:5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006). [CrossRef]
  27. M.A. Ordal, L.L. Long, R.J. Bell, S. E. Bell, R. R. Bell, R.W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," App. Opt. 22, 1099 (1983). [CrossRef]
  28. V. Moreau, M. Bahriz, J. Palomo, L.R. Wilson, A.B. Krysa, C. Sirtori, D.A. Austin, J.W. Cockburn, J.S. Roberts, R. Colombelli, "Optical Mode Control of Surface-Plasmon Quantum Cascade Lasers," Photon. Technol. Lett. 18, 2499 (2006). [CrossRef]
  29. A.B. Krysa, J.S. Roberts, R.P. Green, L.R. Wilson, H. Page, M. Garcia, and J.W. Cockburn, "MOVPE-grown quantum cascade lasers operating at ¼ 9 µm wavelength," J. Cryst. Growth,  272, 682 (2004). [CrossRef]
  30. R. P. Green, L. R. Wilson, E. A. Zibik, D. G. Revin, J. W. Cockburn, C. Pfl¨ugl, W. Schrenk, G. Strasser, A. B. Krysa, J. S. Roberts, C. M. Tey, and A. G. Cullis, "High-performance distributed feedback quantum cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 85, 5529 (2004). [CrossRef]
  31. The commercial software Comsol Multiphysics was used.
  32. Z. Yin, and F. W. Smith, "Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis," Phys. Rev. B 42, 3666 (1990). [CrossRef]
  33. L. A. Coldren, S. W. Corzine, "Diode Lasers and Photonic Integrated Circuits," Wiley-Interscience (1995).
  34. V. Moreau, M. Bahriz, R. Colombelli. P.-A Lemoine, Y. DeWilde, L.R.Wilson, and A.B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited