OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14870–14886

Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber

K. Garay-Palmett, H. J. McGuinness, Offir Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14870-14886 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in photonic crystal optical fiber. We show that it is possible to engineer two-photon states with specific spectral correlation (“entanglement”) properties suitable for quantum information processing applications. We focus on the case exhibiting no spectral correlations in the two-photon component of the state, which we call factorability, and which allows heralding of single-photon pure-state wave packets without the need for spectral post filtering. We show that spontaneous four wave mixing exhibits a remarkable flexibility, permitting a wider class of two-photon states, including ultra-broadband, highly-anticorrelated states.

© 2007 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.0270) Quantum optics : Quantum optics

ToC Category:
Nonlinear Optics

Original Manuscript: August 16, 2007
Revised Manuscript: September 19, 2007
Manuscript Accepted: September 20, 2007
Published: October 26, 2007

K. Garay-Palmett, H. J. McGuinness, Offir Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U'ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, "Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber," Opt. Express 15, 14870-14886 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135-174 (2007). [CrossRef]
  2. S. E. Harris, M. K. Oshman, and R. L. Byer, "Observation of Tunable Optical Parametric Fluorescence," Phys. Rev. Lett. 18, 732-734 (1967). [CrossRef]
  3. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice and M. G. Raymer, "Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion, " Laser Phys. 15, 146-161 (2005).
  4. M. G. Raymer, J. Noh, K. Banaszek and I. A. Walmsley, "Pure-state single-photon wave-packet generation by parmametric down-conversion in a distributed microcavity," Phys. Rev. A 72, 023825 (2005). [CrossRef]
  5. A. B. U’Ren, C. Silberhorn, K. Banaszek and I.A. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004). [CrossRef] [PubMed]
  6. K. Banaszek, A. B. U’Ren and I. A. Walmsley, "Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides," Opt. Lett. 26, 1367-1369 (2001). [CrossRef]
  7. J. Fan and A. Migdall, "A broadband high spectral brightness fiber-based two-photon source," Opt. Express 15, 2915-2920 (2007). [CrossRef] [PubMed]
  8. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  9. J. Fan and A. Migdall, "Generation of cross-polarized photon pairs in a microstructure fiber with frequencyconjugate laser pump pulses," Opt. Express 13, 5777-5782 (2005). [CrossRef] [PubMed]
  10. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004). [CrossRef] [PubMed]
  11. W. P. Grice, A. B. U’Ren and I. A.Walmsley, "Eliminating frequency and space-time correlations in multiphoton states," Phys. Rev. A 64, 063815 (2001). [CrossRef]
  12. P. Russell, "Photonic Crystal Fiber," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  13. M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002). [CrossRef]
  14. R. H. Stolen, "Fundamentals of Raman amplification in fibers," in Raman Amplifiers for Telecommunications 1, edited by M. N. Islam (Springer, 2003), pp. 35-59.
  15. R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman and S. Radic, "Parametric wavelength conversion from conventional near-infrared to visible band," IEEE Photon. Technol. Lett. 18, 2445- 2447 (2006). [CrossRef]
  16. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225- 2227 (2003). [CrossRef] [PubMed]
  17. M. Yu, C. J. McKinstrie and G. P. Agrawal, "Modulational instabilities in dispersion-flattened fibers," Phys. Rev. E 52, 1072-1080 (1995). [CrossRef]
  18. PeterJ.  Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).
  19. Z.D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, "Polarization-Entangled Photon Pairs with Arbitrary Joint Spectrum" Phys. Rev. A 70, 052317 (2004) [CrossRef]
  20. J. P. Torres, F. Macia, S. Carrasco, and L. Torner, "Engineering the frequency correlations of entangled twophoton states by achromatic phase matching" Opt. Lett. 30, 314 (2005) [CrossRef] [PubMed]
  21. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. K¨artner, Phys. Rev. Lett. 94, 083601 (2005) [CrossRef] [PubMed]
  22. A.B. U’Ren, K. Banaszek and I. A. Walmsley, "Photon engineering for quantum information processing" Quantum Information and Computation 3, 480 (2003)
  23. A. B. U’Ren, R. Erdmann, M. De la Cruz and I. A.Walmsley, "Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices, " Phys. Rev. Lett. 97, 223602 (2006). [CrossRef] [PubMed]
  24. V. Giovanetti, S. Lloyd and L. Maccone, "Quantum-enhanced positioning and clock synchronization," Nature 412, 417-419 (2001). [CrossRef]
  25. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of dispersion-canceled quantumoptical coherence tomography," Phys. Rev. Lett. 91, 083601 (2003). [CrossRef] [PubMed]
  26. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  27. J. Chen, X. Li and P. Kumar, "Two-photon-state generation via four-wave mixing in optical fibers," Phys. Rev. A 72, 033801 (2005). [CrossRef]
  28. J. Chen, K. F. Lee and P. Kumar R, "Quantum theory of degenerate |(3) two-photon state," e-print arXiv:quantph/ 0702176v1.
  29. G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed. (Elsevier, 2007).
  30. C. J. McKinstrie, H. Kogelnik and L. Schenato, "Four-wave mixing in a rapidly-spun fiber," Opt. Express 15, 8516-8534 (2006). This paper also reviews scalar and vector FWM in strongly-birefringent and randomlybirefringent fibers. [CrossRef]
  31. K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003). [CrossRef] [PubMed]
  32. T. A. Birks, J. C. Knight and P. St. J. Russell. "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  33. G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey and N. Y. Joly, "Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability," Opt. Express 13, 8662-8670 (2005). [CrossRef] [PubMed]
  34. A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz and MiguelV. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004). [CrossRef]
  35. A. L. Berkhoer and V. E. Zakharov, "Self-excitation of waves with different polarizations in nonlinear media," Sov. Phys. JETP 31, 486-493 (1970).
  36. C. J. McKinstrie and S. Radic, "Phase-sensitive amplification in a fiber," Opt. Express 12, 4973-4979 (2004). [CrossRef] [PubMed]
  37. R. H. Stolen, M. A. Bosch and C. Lin, "Phase matching in birefringent fibers," Opt. Lett. 6, 213-215 (1981). [CrossRef] [PubMed]
  38. R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly and J. C. Knight, "Polarization modulation instability in photonic crystal fibers," Opt. Lett. 31, 1379-1381 (2006). [CrossRef] [PubMed]
  39. S. G. Murdoch, R. Leonhardt and J. D. Harvey, "Polarization modulation instability in weakly birefringent fibers," Opt. Lett. 20, 866-868 (1995). [CrossRef] [PubMed]
  40. Q. Lin, F. Yaman and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers," Opt. Lett. 31, 1286-1288 (2006). [CrossRef] [PubMed]
  41. Q. Lin, F. Yaman and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007). [CrossRef]
  42. Such a state is typically referred to as highly entangled, but one should keep in mind that the large vacuum component of the state renders this "entanglement" useful only in a post-selection experiment.
  43. K. A. O’Donnell and A. B. U’Ren, "Observation of ultrabroadband, beamlike parametric downconversion," Opt. Lett. 32, 817-819 (2007). [CrossRef] [PubMed]
  44. L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek and I. A.Walmsley, "Generation of highly entangled photon pairs for continuous variable Bell inequality violation," J. Mod. Opt. 54, 707-719 (2007). [CrossRef]
  45. R. Jiang, N. Alic, C. J. McKinstrie and S. Radic,"Two-pump parametric amplifier with 40 dB of equalized gain over a bandwidth of 50 nm, " Proc. OFC 2007, paper OWB2.
  46. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham and H. L. Fragnito, "Spectrally flat and broadband doublepumped fiber optical parametric amplifiers," Opt. Express 15, 5288-5309 (2007). [CrossRef]
  47. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin and G. P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003). [CrossRef]
  48. H. Takesue and K. Inoue, "1.5- m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited