OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14887–14900

Frequency-dependent electric dc power consumption model including quantum-conversion efficiencies in ultrafast all-optical semiconductor gates around 160 Gb/s

Jun Sakaguchi, Ferran Salleras, Kohsuke Nishimura, and Yoshiyasu Ueno  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14887-14900 (2007)
http://dx.doi.org/10.1364/OE.15.014887


View Full Text Article

Enhanced HTML    Acrobat PDF (357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on nine up-to-date types of semiconductor-optical-amplifier (SOA) samples, we devised a power-consumption model of SOA-based all-optical gates as a tool to develop faster and more efficient OTDM systems for bitrates from 10 to 160 Gb/s and those over 160 Gb/s. The conventional effect of a continuous wave (cw) holding beam was included in the model. Furthermore, in this work we defined three step-wise quantum conversion efficiencies η1, η2, and η3 from current-injected carriers through photons. The dependence of each of the three efficiencies on the SOA-structure was studied. The total efficiency ηT observed for the nine SOAs ranged widely from 0.07 to 0.46. The validity of the power-consumption model was verified by systematically measuring the effective carrier recovery rate. According to our model, the power consumption of the best existing SOA-based gate for 160-Gb/s signals is 750 mW, and this increases at a rate approximately proportional to (bitrate)2, and decreases proportionally to (1ηT)2.

© 2007 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 31, 2007
Revised Manuscript: October 23, 2007
Manuscript Accepted: October 24, 2007
Published: October 26, 2007

Citation
Jun Sakaguchi, Ferran Salleras, Kohsuke Nishimura, and Yoshiyasu Ueno, "Frequency-dependent electric dc power consumption model including quantum-conversion efficiencies in ultrafast all-optical semiconductor gates around 160 Gb/s," Opt. Express 15, 14887-14900 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14887


Sort:  Year  |  Journal  |  Reset  

References

  1. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Selected Topics in Quantum Electron. 6, 1428-1435 (2000).Q1 [CrossRef]
  2. Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B19, 2573-2589 (2002).
  3. S. Nakamura, Y. Ueno, K. Tajima, "Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch," presented at Optical Fiber Communications Conference (2002), FD3.
  4. Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photonics. Technol. Lett. 13, 469-471 (2001). [CrossRef]
  5. S. Nakamura, Y. Ueno, and K. Tajima, "168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch," IEEE Photonics. Technol. Lett. 13, 1091-1093 (2001). [CrossRef]
  6. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave. Technol. 24, 230-236 (2006). [CrossRef]
  7. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A.M.J. Koonen, G.D. Khoe, X. Shu, I. Bennion and H.J.S. Dorren, "Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier," J. Lightwave. Technol. 25, 103-108 (2007). [CrossRef]
  8. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu and I. Bennion, "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier," Opt. Lett. 32, 835-837 (2007). [CrossRef] [PubMed]
  9. C. Schubert, R. H. Derksen, M. Moller, R. Ludwig, C.-J. Weiske, J. Lutz, S. Ferber, A. Kirstadter, G. Lehmann and C. Schmidt-Langhorst, "Integrated 100-Gb/s ETDM receiver," J. Lightwave Technol. 25, 122-130 (2007). [CrossRef]
  10. R. J. Manning and D. A. O. Davies, "Three-wavelength device for all-optical signal processing," Opt. Lett. 19, 889-891 (1994). [CrossRef] [PubMed]
  11. J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photonics Technol. Lett. 14, 12-14 (2002). [CrossRef]
  12. G. Talli and M.J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments," Opt. Commun. 218, 161-166 (2003). [CrossRef]
  13. G. Talli and M.J. Adams, "Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam," Opt. Commun. 245, 363-370 (2005). [CrossRef]
  14. A. E. Siegman, Lasers (Oxford Univ. Press, 1986), Chap. 7 and Chap. 10.
  15. T. Saitoh and T. Mukai, "Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification," IEEE J. Quantum. Electron. 26, 2086-2094 (1990). [CrossRef]
  16. Y. Ueno, M. Toyoda, R. Suzuki and Y. Nagasue, "Modeling of the polarization-discriminating symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random amplitude-noise suppression," Optics Express,  14, 348-360 (2006). [CrossRef]
  17. J. Sakaguchi, M.L. Nielsen, T. Ohira, R. Suzuki and Y. Ueno, "Observation of small sub-pulses out of the delayed-interference signal-wavelength converter," Jpn. J. Appl. Phys 44, L1358-1360 (2005). [CrossRef]
  18. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum. Electron. 37, 439-447 (2001). [CrossRef]
  19. M. L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on highspeed SOA-based all-optical switches," Optics Express 14, 331-347 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited