OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14914–14920

Nanometric control of the distance between plasmonic nanoparticles using optical forces

B. Sepulveda, J. Alegret, and M. Käll  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14914-14920 (2007)
http://dx.doi.org/10.1364/OE.15.014914


View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically analyze the optical forces between two nearby silver nanoparticles for the case when the wavelength of the incoming light is close to the localized surface plasmon resonance (LSPR). It is shown that the optical force between the nanoparticles is enhanced by the LSPR and that it changes from attractive to repulsive for wavelengths slightly shorter than the resonance when the polarization of the incident light is parallel to the axis of the dimer. This behavior can be utilized to generate a stable separation distance between the nanoparticles. In the Rayleigh limit, the equilibrium distance is uniquely determined by the real part of the particle polarizability and the wavelength of the incident light. The results suggest that near-field optical forces can be used to manipulate and organize plasmonic nanoparticles with a tunable spatial resolution in the nanometer regime.

© 2007 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Trapping

History
Original Manuscript: September 6, 2007
Revised Manuscript: September 26, 2007
Manuscript Accepted: September 26, 2007
Published: October 26, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
B. Sepúlveda, J. Alegret, and M. Käll, "Nanometric control of the distance between plasmonic nanoparticles using optical forces," Opt. Express 15, 14914-14920 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14914


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. J. C. Crocker and D. G. Grier, "Microscopic Measurement of the Pair Interaction Potential of Charge-Stabilized Colloid," Phys. Rev. Lett. 73, 352-355 (1994) [CrossRef] [PubMed]
  3. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998). [CrossRef]
  4. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001). [CrossRef] [PubMed]
  5. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997). [CrossRef] [PubMed]
  6. S. B. Smith, Y. J. Cui, and C. Bustamante, "Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules," Science 271, 795-799 (1996). [CrossRef] [PubMed]
  7. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  8. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002). [CrossRef] [PubMed]
  9. K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999). [CrossRef]
  10. R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005). [CrossRef] [PubMed]
  11. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape " Nature Physics 3, 477-480 (2007).Q1 [CrossRef]
  12. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003). [CrossRef]
  13. H. X. Xu and M. Kall, "Surface-plasmon-enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002). [CrossRef] [PubMed]
  14. V. Wong and M. A. Ratner, "Geometry dependent features of optically induced forces between silver nanoparticles," J. Phys. Chem. B 110, 19243-19253 (2006). [CrossRef] [PubMed]
  15. A. J. Hallock, P. L. Redmond, and L. E. Brus, "Optical forces between metallic particles," Proc. Natl. Acad. Sci. U. S. A. 102, 1280-1284 (2005). [CrossRef] [PubMed]
  16. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007). [CrossRef] [PubMed]
  17. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano. Lett. 4, 115-118 (2004). [CrossRef]
  18. F. Svedberg and M. Kall, "On the importance of optical forces in surface-enhanced Raman scattering (SERS)," Faraday Discuss. 132, 35-44 (2006). [CrossRef] [PubMed]
  19. F. Svedberg, Z. P. Li, H. X. Xu, and M. Kall, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano. Lett. 6, 2639-2641 (2006). [CrossRef] [PubMed]
  20. B. T. Draine and P. J. Flatau, "Discrete-Dipole Approximation for Scattering Calculations," J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  21. P. C. Chaumet and M. Nieto-Vesperinas, "Time-averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited