OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 14954–14960

Aperiodic computer-generated volume holograms improve the performance of amplitude volume gratings

Tim D. Gerke and Rafael Piestun  »View Author Affiliations

Optics Express, Vol. 15, Issue 23, pp. 14954-14960 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the performance of amplitude computer-generated volume holograms (CGVH) in terms of efficiency and angular/frequency selectivity. We compare CGVHs to interferometrically-recorded amplitude volume holograms. Theoretical results show that amplitude CGVHs can increase the efficiency as well as the angular and wavelength selectivity relative to optically recorded amplitude volume holograms. We fabricate the CGVHs using femtosecond laser pulse micromachining in the bulk of glass and demonstrate results consistent with the theory. These results show that aperiodic three-dimensional structures provide the degrees of freedom necessary to improve the performance of volume diffractive optics. They suggest that, under certain circumstances, a departure from the Bragg paradigm provides enhanced volume diffraction properties.

© 2007 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1760) Holography : Computer holography
(090.7330) Holography : Volume gratings
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:

Original Manuscript: August 17, 2007
Revised Manuscript: October 5, 2007
Manuscript Accepted: October 9, 2007
Published: October 29, 2007

Tim D. Gerke and Rafael Piestun, "Aperiodic computer-generated volume holograms improve the performance of amplitude volume gratings," Opt. Express 15, 14954-14960 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.-Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83,593-595 (2003). [CrossRef]
  2. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53 (2000). [CrossRef] [PubMed]
  3. E. Schonbrun and R. Piestun, "Optical vortices for localized optical lattice site manipulation," Optical Engineering 45,028001 (2006). [CrossRef]
  4. M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Appl. Phys. Lett. 85,1895-1897 (2004). [CrossRef]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21,1729-1731 (1996). [CrossRef] [PubMed]
  6. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, "In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses," Opt. Lett. 26,19-21 (2001). [CrossRef]
  7. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, "Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses," Opt. Express 10,978-983 (2002). [PubMed]
  8. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica," Appl. Phys. Lett. 87,014104 (2005). [CrossRef]
  9. W. Cai, A. R. Libertun, and R. Piestun, "Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings," Opt. Express 14,3785-3791 (2006). [CrossRef] [PubMed]
  10. W. Cai, T. J. Reber, and R. Piestun, "Computer-generated volume holograms fabricated by femtosecond laser micromachining," Opt. Lett. 31,1836-1838 (2006). [CrossRef] [PubMed]
  11. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21,2023-2025 (1996). [CrossRef] [PubMed]
  12. G. Tricoles, "Computer generated holograms: an historical review," Appl. Opt. 26,4351-4360 (1987). [CrossRef] [PubMed]
  13. H. J. Caulfield and S. Lu, The Applications of Holography (Wiley-Interscience, 1970).
  14. G. Barbastathis, M. Balberg, and D. J. Brady, "Confocal microscopy with a volume holographic filter," Opt. Lett. 24,811-813 (1999). [CrossRef]
  15. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48,2909 (1969).
  16. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  17. D. Brady and D. Psaltis, "Control of volume holograms," J. Opt. Soc. Am. A 9,1167-1182 (1992). [CrossRef]
  18. A. P. Yakimovich, "Multilayer volume holographic lattices," Optika I Spektroskopiya 49,158-164 (1980).
  19. B. Y. Zel’dovich, D. I. Mirovitski, N. V. Rostovtseva, and O. B. Serov, "Characteristics of two-layer phase holograms," Sov. J. Quantum Electron 14,364-369 (1984). [CrossRef]
  20. R. V. Johnson and A. R. Tanguay, Jr., "Stratified volume holographic optical elements," Opt. Lett. 13,189-191 (1988). [CrossRef] [PubMed]
  21. D. M. Chambers and G. P. Nordin, "Stratified volume diffractive optical elements as high-efficiency gratings," J. Opt. Soc. Am. A 16,1184-1193 (1999). [CrossRef]
  22. S. Borgsmüller, S. Noehte, C. Dietrich, T. Kresse, and R. Männer, "Computer-generated stratified diffractive optical elements," Appl. Opt. 42,5274-5283 (2003). [CrossRef] [PubMed]
  23. J. A. Fleck, Jr., J. R. Morris, and M. D. Feit, "Time-dependent propagation of high-energy laser beams in the atmosphere," Appl. Phys. A. 10,129-160 (1976).
  24. F. Wyrowski and O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography," J. Opt. Soc. Am. A 5,1058-1065 (1988). [CrossRef]
  25. F. Wyrowski, "Iterative quantization of digital amplitude holograms," Appl. Opt. 28,3864-3870 (1989). [CrossRef] [PubMed]
  26. R. Piestun, B. Spektor, and J. Shamir, "On-axis binary-amplitude computer generated holograms," Opt. Commun. 136,85-92 (1997). [CrossRef]
  27. R. Piestun and J. Shamir, "Control of wave-front propagation with diffractive elements," Opt. Lett. 19,771-773 (1994). [CrossRef] [PubMed]
  28. R. Piestun, B. Spektor, and J. Shamir, "Wave fields in three dimensions: analysis and synthesis," J. Opt. Soc. Am. A 13,1837-1848 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited