OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 14979–14992

Pump-induced, dual-frequency switching in a short-cavity, ytterbium-doped fiber laser

W. Guan and J. R. Marciante  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 14979-14992 (2007)
http://dx.doi.org/10.1364/OE.15.014979


View Full Text Article

Enhanced HTML    Acrobat PDF (908 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual-frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3510) Lasers and laser optics : Lasers, fiber
(140.5560) Lasers and laser optics : Pumping
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 23, 2007
Revised Manuscript: September 25, 2007
Manuscript Accepted: September 25, 2007
Published: October 29, 2007

Citation
W. Guan and J. R. Marciante, "Pump-induced, dual-frequency switching in a short-cavity, ytterbium-doped fiber laser," Opt. Express 15, 14979-14992 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-14979


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Zellmer, U. Willamowski, A. Tünnermann, H. Welling, S. Unger, V. Reichel, H.-R. Müller, J. Kirchhof, and P. Albers, "High-Power cw Neodymium-Doped Fiber Laser Operating at 9.2 W with High Beam Quality," Opt. Lett. 20, 578−580 (1995). [CrossRef] [PubMed]
  2. K. H. Ylä-Jarkko, "Performance limitations of high-power DFB fiber lasers," IEEE Photon. Technol. Lett. 15, 191−193 (2003). [CrossRef]
  3. L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004). [CrossRef]
  4. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088−6092 (2004). [CrossRef] [PubMed]
  5. O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-Frequency Operation of an Er-Doped Twincore Fiber Loop Laser," IEEE Photon. Technol. Lett. 8, 63−65 (1996). [CrossRef]
  6. P.-C. Peng, H.-Y. Tseng, and S. Chi, "A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Pérot laser diode," IEEE Photon. Technol. Lett. 15, 661−663 (2003). [CrossRef]
  7. J. Nilsson, Y. W. Lee, and S. J. Kim, "Robust dual-wavelength ring-laser based on two spectrally different erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 8, 1630−1632 (1996). [CrossRef]
  8. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, "Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express 13, 142−147 (2005). [CrossRef] [PubMed]
  9. X. Chen, J. Yao, and Z. Deng, "Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser," Opt. Lett. 30, 2068-2070 (2005). [CrossRef] [PubMed]
  10. Y. Yao, X. Chen, Y. Dai, and S. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187−189 (2006). [CrossRef]
  11. L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004). [CrossRef]
  12. L. Talaverno, S. Abad, S. Jarabo, and M. López-Amo, "Multiwavelength Fiber Laser Sources with Bragg-Grating Sensor Multiplexing Capability," J. Lightwave Technol. 19, 553−558 (2001). [CrossRef]
  13. A. Lewis, "Measurement of Length, Surface Form and Thermal Expansion Coefficient of Length Bars Up to 1.5 m Using Multiple-Wavelength Phase-Stepping Interferometry," Meas. Sci. Technol. 5, 694−703 (1994). [CrossRef]
  14. W. T. Holloway, A. J. Keating, and D. D. Sampson, "Multiwavelength Source for Spectraum-Sliced WDM Access Networks and LAN’s," IEEE Photon. Technol. Lett. 9, 1014−1016 (1997). [CrossRef]
  15. M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999). [CrossRef]
  16. Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photon. Technol. Lett. 14, 612−614 (2002). [CrossRef]
  17. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous Four-Wavelength Lasing Oscillations in an Erbium-Doped Fiber Laser with Two High Birefrigence Fiber Bragg Gratings," Opt. Express 12, 2056-2061 (2004). [CrossRef] [PubMed]
  18. X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004). [CrossRef]
  19. C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004). [CrossRef]
  20. C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004). [CrossRef]
  21. F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast Tunable 1.5 μm Distributed Bragg Reflector Laser for Optical Switching Applications," Electron. Lett. 29, 41−43 (1993). [CrossRef]
  22. J. Sun, J. Qiu, and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 183, 193−197 (2000). [CrossRef]
  23. W. Guan and J. R. Marciante, "Dual-frequency operation in a short-cavity ytterbium-doped fiber laser," IEEE Photon. Technol. Lett. 19, 261−263 (2007). [CrossRef]
  24. W. Guan and J. R. Marciante, "Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser," Electron. Lett. 43, 558−559 (2007). [CrossRef]
  25. Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, "Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers," IEEE Photon. Technol. Lett. 10, 1253−1255 (1998). [CrossRef]
  26. M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Appl. Opt. 26, 3474−3478 (1987). [CrossRef] [PubMed]
  27. I. Kelson and A. Hardy, "Optimization of Strong Pumped Fiber Lasers," J. Lightwave Technol. 17, 891−897 (1999). [CrossRef]
  28. S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999). [CrossRef]
  29. J. R. Marciante and J. D. Zuegel, "High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification," Appl. Opt. 45, 6798−6804 (2006). [CrossRef] [PubMed]
  30. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol. 16, 1013−1023 (1998). [CrossRef]
  31. G. E. Forsythe and W. R. Wasow, Finite-Difference Methods for Partial Differential Equations (Wiley, New York, 1960).
  32. N. Lagakos, J. A. Bucaro, and J. Jarzynski, "Temprature-Induced Optical Phase Shifts in Fibers," Appl. Opt. 20, 2305−2308 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1215 KB)     
» Media 2: AVI (1229 KB)     
» Media 3: AVI (1328 KB)     
» Media 4: AVI (518 KB)     
» Media 5: AVI (504 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited