OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15047–15052

Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides

Vahid G. Ta’eed, Mark D. Pelusi, Benjamin J. Eggleton, Duk-Yong Choi, Steve Madden, Douglas Bulla, and Barry Luther-Davies  »View Author Affiliations

Optics Express, Vol. 15, Issue 23, pp. 15047-15052 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal by cross-phase modulation in a newly developed chalcogenide glass waveguide based photonic chip. These new serpentine As2S3 waveguides offer a nonlinear coefficient ≈1700 W-1 km-1 with 5× lower propagation loss over a length of 22.5 cm which ensures the full propagation length contributes towards the nonlinear process. This reduces the peak operating power thereby allowing a ×4 increase in the data rate compared with previous results. Spectral measurements show the device operates over a span of 40 nm while system measurements show just over 1 dB of power penalty at a bit-error rate of 10-9. This is primarily due to the compact planar waveguide design which minimizes the effect of group-velocity dispersion.

© 2007 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 14, 2007
Revised Manuscript: October 24, 2007
Manuscript Accepted: October 26, 2007
Published: October 30, 2007

Vahid Ta'eed, Mark D. Pelusi, Benjamin J. Eggleton, Duk-Yong Choi, Steve madden, Douglas Bulla, and Barry Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061-1073 (1998). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  3. J. Leuthold, L. Moller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, "160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties," Electron. Lett. 40, 554-555 (2004). [CrossRef]
  4. B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000). [CrossRef]
  5. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W-1km-1," Opt. Express 13, 3144-3149 (2005). [CrossRef] [PubMed]
  6. V. G. Ta'eed, L. B. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006). [CrossRef] [PubMed]
  7. M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, "Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide," Electron. Lett. 43, 945-947 (2007). [CrossRef]
  8. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997). [CrossRef]
  9. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006). [CrossRef]
  10. E. M. Vogel, M. J. Weber, and D. M. Krol, "Nonlinear Optical Phenomena in Glass," Phys. Chem. Glasses 32, 231-254 (1991).
  11. V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007). [CrossRef] [PubMed]
  12. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006). [CrossRef]
  13. M. D. Pelusi, V. G. Ta'eed, M. R. E. M. Lamont, S., D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-high Nonlinear As2S3 Planar Waveguide for 160 Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing," IEEE Photon. Technol. Lett. 19, 1496-1498 (2007). [CrossRef]
  14. Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004). [CrossRef] [PubMed]
  15. S. Madden, D.-Y. Choi, D. Bulla, A. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007). [CrossRef] [PubMed]
  16. M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am. B 23, 1323-1331 (2006). [CrossRef]
  17. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited