OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15060–15065

Optimization of FM spectroscopy parameters for a frequency locking loop in small scale CPT based atomic clocks

I. Ben-Aroya, M. Kahanov, and G. Eisenstein  »View Author Affiliations

Optics Express, Vol. 15, Issue 23, pp. 15060-15065 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (587 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the optimization of a Frequency Locked Loop (FLL) in an atomic clock which is based on Coherent Population Trapping (CPT) in 87Rb vapor using the D2 transition. The FLL uses frequency modulation (FM) spectroscopy and we study the effect of FM parameters (modulation frequency and index) on the sensitivity and the signal to noise ratio of the feedback signal in the FLL. The clock which employs a small spherical glass cell containing 87Rb atoms and a buffer gas, exhibits a short term stability of 3×10-11/√τ. The long term relative frequency stability of the 10 MHz output is better than 10-10 with a drift of 10-11 per day.

© 2007 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Atomic and Molecular Physics

Original Manuscript: August 20, 2007
Revised Manuscript: October 15, 2007
Manuscript Accepted: October 20, 2007
Published: October 30, 2007

I. Ben-Aroya, M. Kahanov, and G. Eisenstein, "Optimization of FM spectroscopy parameters for a frequency locking loop in small scale CPT based atomic clocks," Opt. Express 15, 15060-15065 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Vanier, "Atomic clocks based on coherent population trapping: a review," Appl. Phys. B 81, 421-442 (2005). [CrossRef]
  2. S. Knappe, P. D. D. Schwindt, V. Shah, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 13, 1249-1253 (2005). [CrossRef] [PubMed]
  3. R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland and G. M. Peake, "The MAC - a Miniature Atomic Clock," in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752-757.
  4. R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland and G. M. Peake, "The Miniature Atomic Clock-Pre-Production Results," in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed., (Geneva, Switzerland, 2007), pp. 1327-1333.
  5. N. Cyr, M. Têtu and M. Breton, "All-optical microwave frequency standard: a proposal," IEEE Trans. Instrum. Meas. 42, 640-649 (1993). [CrossRef]
  6. D. V. Kuksenkov, H. Temkin and S. Swirhun, "Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 67, 2141-2143 (1995). [CrossRef]
  7. V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg and J. Kitching, "Atom-based stabilization for laser-pumped atomic clocks, " in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed., (Braunschweig, Germany, 2006), pp. 224-228.
  8. I. Ben-Aroya, M. Kahanov and G. Eisenstein, "A CPT based 87Rb atomic clock employing a small spherical glass vapor cell," in Proceedings of the 38th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, L. A. Breakiron, ed. (Reston, VA, USA, 2006), pp. 259-270.
  9. G. C. Bjorklund, M. D. Levenson, W. Lenth and C. Ortiz, "Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis," Appl. Phys. B. 32, 145-152 (1983). [CrossRef]
  10. M. Gehrtz, G. C. Bjorklund and E. A. Whittaker, "Quantum-limited frequency-modulation spectroscopy," J. Opt. Soc. Am. B. 2, 1510-1526 (1985). [CrossRef]
  11. R. Wynands and A. Nagel, "Inversion of frequency-modulation spectroscopy line shapes," J. Opt. Soc. Am. B. 16, 1617-1622 (1999). [CrossRef]
  12. J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe and R. Wynands, "Optical-noise in laser-pumped, all-optical microwave frequency references," J. Opt. Soc. Am. B. 18, 1676-1683 (2001). [CrossRef]
  13. J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands and W. Wiedmann, "A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000). [CrossRef]
  14. D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth and M. Crescimanno, "Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock," J. Opt. Soc. Am. B. 22, 305-310 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited