OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15129–15146

Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry

Sucbei Moon and Dug Young Kim  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 15129-15146 (2007)
http://dx.doi.org/10.1364/OE.15.015129


View Full Text Article

Enhanced HTML    Acrobat PDF (585 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new signal detection method that can effectively suppress the effect of relative intensity noise (RIN) in optical frequency-domain reflectometry or imaging (OFDR/OFDI) schemes to enhance the sensitivity and dynamic range. In this method, spectral interferogram signal is normalized digitally by a spectral reference signal that contains the realtime spectrum and the RIN information of the frequency-swept source. Unlike the conventional balanced detection method that suppresses only additive intensity noises, we found that our proposed scheme removes both the additive and convolutional contributions of the RINs in the final interferogram signals. Experimental demonstrations were performed using a stretched-pulse optical coherence tomography (SP-OCT) system where the high RIN of a supercontinuum source had been a serious drawback. We have experimentally verified the superiority of our proposed scheme in terms of its improved dynamic range in comparison to the balanced detection method. In addition, we have shown that the noise suppression performance is immune to the spectral imbalance characteristics of the optical components used in the system, whereas the common-mode noise rejection of the conventional balanced detection method is influenced by them.

© 2007 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: July 23, 2007
Revised Manuscript: October 14, 2007
Manuscript Accepted: October 28, 2007
Published: October 31, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Sucbei Moon and Dug Young Kim, "Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry," Opt. Express 15, 15129-15146 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15129


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. C. Rosa and A. Gh. Podoleanu, "Limitation of the achievable signal-to-noise ratio in optical coherence tomography due to mismatch of the balanced receiver," Appl. Opt. 43, 4802-4815 (2004). [CrossRef] [PubMed]
  2. A. Rollins and J. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999). [CrossRef]
  3. A. Gh. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system," Appl. Opt. 39, 173-182 (2000). [CrossRef]
  4. S. H. Yun, B. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski and J. G. Fujimoto, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005). [CrossRef] [PubMed]
  6. R. Huber, M. Wojtkowski and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  7. R. Huber, DesmondC. Adler and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  8. D. C. Adler, R. Huber and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007). [CrossRef] [PubMed]
  9. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). [CrossRef] [PubMed]
  10. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002). [CrossRef]
  11. R. Leitgeb, C. K. Hitzenberger and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  12. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  13. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  14. S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14, 11575-11584 (2006). [CrossRef] [PubMed]
  15. K. Takada, K. Yukimatsu, M. Kobayashi and J. Noda, "Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution," Appl. Phys. Lett. 59, 143-145 (1991). [CrossRef]
  16. M. Bashkansky, M. D. Duncan, J. Reintjes and P. R. Battle, "Signal processing for improving field cross-correlation function in optical coherence tomography," Appl. Opt. 37, 8137-8138 (1998).
  17. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable Carrier Generation and Phase-Resolved Digital Data Processing in Optical Coherence Tomography," Appl. Opt. 40, 5787-5790 (2001). [CrossRef]
  18. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002). [CrossRef]
  19. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005). [CrossRef]
  20. S. Moon and D. Y. Kim, "Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a dispersion-shifted fiber," Opt. Express 14, 270-278 (2006). [CrossRef] [PubMed]
  21. M. Kunt, "Chapter 3. The discrete Fourier transformation" in Digital signal processing (Artech House, Inc., Massachusetts, 1986).
  22. Y. Park, T. -J. Ahn, J. -C. Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4597-4616 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited