OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15250–15259

Adaptive Speckle Imaging Interferometry: a new technique for the analysis of micro-structure dynamics, drying processes and coating formation

L. Brunel, A. Brun, P. Snabre, and L. Cipelletti  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 15250-15259 (2007)
http://dx.doi.org/10.1364/OE.15.015250


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an extension of multi-speckle diffusing wave spectroscopy adapted to follow the non-stationary microscopic dynamics in drying films and coatings in a very reactive way and with a high dynamic range. We call this technique “Adaptive Speckle Imaging Interferometry”. We introduce an efficient tool, the inter-image distance, to evaluate the speckle dynamics, and the concept of “speckle rate” (SR, in Hz) to quantify this dynamics. The adaptive algorithm plots a simple kinetics, the time evolution of the SR, providing a non-invasive characterization of drying phenomena. A new commercial instrument, called HORUS®, based on ASII and specialized in the analysis of film formation and drying processes is presented.

© 2007 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 21, 2007
Revised Manuscript: October 31, 2007
Manuscript Accepted: October 31, 2007
Published: November 2, 2007

Citation
L. Brunel, A. Brun, P. Snabre, and L. Cipelletti, "Adaptive Speckle Imaging Interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation," Opt. Express 15, 15250-15259 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. A. Clark, J. H. Lunacek, and G. B. Benedek, "A Study of Brownian Motion Using Light Scattering," Am. J. Phys. 38, 5 (1970). [CrossRef]
  2. B. J. Berne, and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  3. P. E. Wolf and G. Maret, "Multiple Light Scattering from Disordered Media. The Effect of Brownian Motion of Scatterers," Z. Phy. B 65, 409 (1987). [CrossRef]
  4. D. J. Pine, D. A. Weitz, P. M. Chaikin and E. Herbolzeimer. "Diffusing Wave Spectroscopy," Phy Rev. Lett. 60, 1434 (1988). [CrossRef]
  5. D. A. Weitz and D. J. Pine, "Diffusing Wave Spectroscopy" in Dynamic Light Scattering, The Method and Some Applications, W. Brown, ed., (Clarendon, Oxford, 1993), p. 719.
  6. P. N. Pusey and W. van Megen, "Dynamic light scattering by non-ergodic media," Physica A 157, 705 (1989). [CrossRef]
  7. J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, and P. M. Chaikin, "Nonergodicity and Light-Scattering from Polymer Gels," Phys. Rev. A 46, 6550 (1992). [CrossRef] [PubMed]
  8. F. Scheffold, S.E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing wave spectroscopy of non ergodic media," Phys. Rev. E 63, 061404 (2001). [CrossRef]
  9. V. Viasnoff, F. Lequeux, and D. J. Pine, "Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73, 2336 (2002). [CrossRef]
  10. J. D. Briers, "Speckle fluctuations and biomedical optics: implications and applications," Opt. Eng. 32, 277 (1993). [CrossRef]
  11. R. Arizaga, E. E. Grumel, N. Cap, M. Trivi, J. I. Amalvy, B. Yepes, G. Ricaurte, "Following the drying of spray paints using space and time contrast of dynamic speckle," JCT Research 3, 295 (2006).
  12. G. Romero, E. E. Alanis, H. J. Rabal, "Statistics of the dynamic speckle produced by a rotating diffuser and its application to the assessement of paint drying," Opt. Eng. 39, 1652 (2000). [CrossRef]
  13. J. I. Amalvy, C. A. Lasquibar, R. Arizaga, H. Rabal, M. Trivi, "Application of dynamic speckle interferometry to the drying of coatings," Progress in Organic Coatings 42, 89 (2001). [CrossRef]
  14. A. P. Y. Wong and P. Wiltzius, "Dynamic light scattering with a CCD camera," Rev. Sci. Instrum. 64, 2547 (1993). [CrossRef]
  15. S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, H. Sillescu, "Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes," J. Chem. Phys. 104, 1758 (1996). [CrossRef]
  16. L. Cipelletti and D. A. Weitz, "Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator," Rev. Sci. Instrum. 70, 3214 (1999). [CrossRef]
  17. A. Knaebel, M. Bellour, J.-P. Munch, V. Viasnoff, F. Lequeux, and J. L. Harden, "Aging behavior of Laponite clay particle supensions," Europhys. Lett. 52, 73 (2000). [CrossRef]
  18. L. Brunel, P. Snabre, Patent, "Method and device for the analysis of movement in a scattering medium," 25/09/2003, EP1664744, WO 2005/031324.
  19. K. Schätzel, "Noise in photon correlation and photon structure functions," Optica acta 30, 155 (1983). [CrossRef]
  20. A look up table can be also used for the multiplication, but its size would be the square of the size of the one used for computing the square. For 8-bit numbers, the LUT used for the square has 256 entries while the one used for the multiplication has 65536 entries.
  21. J. W. Goodman, in Laser speckles and related phenomena, edited by J. C. Dainty (Springer-Verlag, Berlin, 1975) p. 9.
  22. L. Cipelletti, L. Ramos, "Slow dynamics in glassy soft matter," J. Phy.: Condens. Matter 17, R253 (2005). [CrossRef]
  23. L/l* is estimated by comparing measurements of the backscattered flux to results from Monte Carlo simulations of the photon propagation in a random scattering medium, where L/l* is tuned to reproduce the experimental measurements.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited